56 research outputs found

    Standardization and application of microsatellite markers for variety identification in tomato and wheat

    Get PDF
    The present study is part of a EU project that aims to demonstrate the technical viability of STMS markers for variety identification. As examples two important European crop species, tomato and wheat were chosen. Initially, about 30-40 STMS markers were used to identify a set of 20 good markers per crop and to standardise the methodology and the interpretation of the results in different laboratories. Several systems were used for the detection of STMS polymorphisms. The selected STMS markers are being tested on 500 varieties of each species and databases are being constructed. The first comparisons of data generated by the different laboratories revealed a high degree of agreement. The causes of discrepancies between duplicate samples analysed in different laboratories and precautions to prevent them, are discussed

    Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing

    Get PDF
    Molecular markers linked to phenotypically important traits are of great interest especially when traits are difficult and/or costly to be observed. In tomato where a strong focus on resistance breeding has led to the introgression of several resistance genes, resistance traits have become important characteristics in distinctness, uniformity and stability (DUS) testing for Plant Breeders Rights (PBR) applications. Evaluation of disease traits in biological assays is not always straightforward because assays are often influenced by environmental factors, and difficulties in scoring exist. In this study, we describe the development and/or evaluation of molecular marker assays for the Verticillium genes Ve1 and Ve2, the tomato mosaic virusTm1 (linked marker), the tomato mosaic virus Tm2 and Tm22 genes, the Meloidogyne incognita Mi1-2 gene, the Fusarium I (linked marker) and I2 loci, which are obligatory traits in PBR testing. The marker assays were evaluated for their robustness in a ring test and then evaluated in a set of varieties. Although in general, results between biological assays and marker assays gave highly correlated results, marker assays showed an advantage over biological tests in that the results were clearer, i.e., homozygote/heterozygote presence of the resistance gene can be detected and heterogeneity in seed lots can be identified readily. Within the UPOV framework for granting of PBR, the markers have the potential to fulfil the requirements needed for implementation in DUS testing of candidate varieties and could complement or may be an alternative to the pathogenesis tests that are carried out at present

    Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sugar beet is an obligate outcrossing species. Varieties consist of mixtures of plants from various parental combinations. As the number of informative morphological characteristics is limited, this leads to some problems in variety registration research.</p> <p>Results</p> <p>We have developed 25 new microsatellite markers for sugar beet. A selection of 12 markers with high quality patterns was used to characterise 40 diploid and triploid varieties. For each variety 30 individual plants were genotyped. The markers amplified 3-21 different alleles. Varieties had up to 7 different alleles at one marker locus. All varieties could be distinguished. For the diploid varieties, the expected heterozygosity ranged from 0.458 to 0.744. The average inbreeding coefficient F<sub>is </sub>was 0.282 ± 0.124, but it varied widely among marker loci, from F<sub>is </sub>= +0.876 (heterozygote deficiency) to F<sub>is </sub>= -0.350 (excess of heterozygotes). The genetic differentiation among diploid varieties was relatively constant among markers (F<sub>st </sub>= 0.232 ± 0.027). Among triploid varieties the genetic differentiation was much lower (F<sub>st </sub>= 0.100 ± 0.010). The overall genetic differentiation between diploid and triploid varieties was F<sub>st </sub>= 0.133 across all loci. Part of this differentiation may coincide with the differentiation among breeders' gene pools, which was F<sub>st </sub>= 0.063.</p> <p>Conclusions</p> <p>Based on a combination of scores for individual plants all varieties can be distinguished using the 12 markers developed here. The markers may also be used for mapping and in molecular breeding. In addition, they may be employed in studying gene flow from crop to wild populations.</p

    Development of microsatellite markers for identifying Brazilian Coffea arabica varieties

    Get PDF
    Microsatellite markers, also known as SSRs (Simple Sequence Repeats), have proved to be excellent tools for identifying variety and determining genetic relationships. A set of 127 SSR markers was used to analyze genetic similarity in twenty five Coffea arabica varieties. These were composed of nineteen commercially important Brazilians and six interspecific hybrids of Coffea arabica, Coffea canephora and Coffealiberica. The set used comprised 52 newly developed SSR markers derived from microsatellite enriched libraries, 56 designed on the basis of coffee SSR sequences available from public databases, 6 already published, and 13 universal chloroplast microsatellite markers. Only 22 were polymorphic, these detecting 2-7 alleles per marker, an average of 2.5. Based on the banding patterns generated by polymorphic SSR loci, the set of twenty-five coffee varieties were clustered into two main groups, one composed of only Brazilian varieties, and the other of interspecific hybrids, with a few Brazilians. Color mutants could not be separated. Clustering was in accordance with material genealogy thereby revealing high similarity
    • …
    corecore