13 research outputs found

    An Efficient Hybrid Planning Framework for In-Station Train Dispatching

    Get PDF
    In-station train dispatching is the problem of optimising the effective utilisation of available railway infrastructures for mitigating incidents and delays. This is a fundamental problem for the whole railway network efficiency, and in turn for the transportation of goods and passengers, given that stations are among the most critical points in networks since a high number of interconnections of trains’ routes holds therein. Despite such importance, nowadays in-station train dispatching is mainly managed manually by human operators. In this paper we present a framework for solving in-station train dispatching problems, to support human operators in dealing with such task. We employ automated planning languages and tools for solving the task: PDDL+ for the specification of the problem, and the ENHSP planning engine, enhanced by domain-specific techniques, for solving the problem. We carry out a in-depth analysis using real data of a station of the North West of Italy, that shows the effectiveness of our approach and the contribution that domain-specific techniques may have in efficiently solving the various instances of the problem. Finally, we also present a visualisation tool for graphically inspecting the generated plans

    An Efficient Hybrid Planning Framework for In-Station Train Dispatching

    Get PDF
    In-station train dispatching is the problem of optimising the effective utilisation of available railway infrastructures for mitigating incidents and delays. This is a fundamental problem for the whole railway network efficiency, and in turn for the transportation of goods and passengers, given that stations are among the most critical points in networks since a high number of interconnections of trains’ routes holds therein. Despite such importance, nowadays in-station train dispatching is mainly managed manually by human operators. In this paper we present a framework for solving in-station train dispatching problems, to support human operators in dealing with such task. We employ automated planning languages and tools for solving the task: PDDL+ for the specification of the problem, and the ENHSP planning engine, enhanced by domain-specific techniques, for solving the problem. We carry out a in-depth analysis using real data of a station of the North West of Italy, that shows the effectiveness of our approach and the contribution that domain-specific techniques may have in efficiently solving the various instances of the problem. Finally, we also present a visualisation tool for graphically inspecting the generated plans

    A Planning-based Approach for In-Station Train Dispatching

    No full text
    In-station train dispatching is the problem of optimising the effective utilisation of available railway infrastructures for mitigating incidents and delays. In this paper, we describe an approach for dealing with the in-station dispatching problem by means of automated planning techniques

    In-Station Train Dispatching: A PDDL+ Planning Approach

    No full text
    In railway networks, stations are probably the most critical points for interconnecting trains’ routes: in a restricted geographical area, a potentially large number of trains have to stop according to an official timetable, with the concrete risk of accumulating delays that can then have a knockout effect on the rest of the network. In this context, in-station train dispatching plays a central role in maximising the effective utilisation of available railway infrastructures and in mitigating the impact of incidents and delays. Unfortunately, in-station train dispatching is still largely handled manually by human operators in charge of a group of stations. In this paper we make a step towards supporting the operator with some automatic tool, by describing an approach for performing in-station dispatching by means of automated planning techniques. Given the mixed discrete-continuous nature of the problem, we employ PDDL+ for the specification of the problem, and the ENHSP planning engine enhanced by domain-specific solving techniques. Results on a range of scenarios, using real-data of a station of the North West of Italy, show the potential of our approach

    In-Station Train Movements Prediction: from Shallow to Deep Multi Scale Models

    Get PDF
    Public railway transport systems play a crucial role in servicing the global society and are the transport backbone of a sustainable economy. While a significant effort has been devoted to predict inter-station trains movements to support stakeholders (i.e., infrastructure managers, train operators, and travellers) decisions, the problem of predicting in-station movements, while being crucial to improve train dispatching (i.e., empowering human or automatic dispatchers), has been far more less investigated. In fact, stations are the most critical points in a railway network: even small improvements in the estimation of the duration of trains movements can remarkably enhance the dispatching efficiency in coping with the increase in capacity demand and with delays. In this work we will first leverage on state of the art shallow models, fed by domain experts with domain specific features, to improve the current predictive systems. Then, we will leverage on a customised deep multi scale model able to automatically learn the representation and improve the accuracy of the shallow models. Results on real-world data coming from the Italian railway network will support our proposal
    corecore