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Abstract. In-station train dispatching is the problem of optimising the
effective utilisation of available railway infrastructures for mitigating in-
cidents and delays. This is a fundamental problem for the whole railway
network efficiency, and in turn for the transportation of goods and pas-
sengers, given that stations are among the most critical points in net-
works since a high number of interconnections of trains’ routes holds
therein. Despite such importance, nowadays in-station train dispatching
is mainly managed manually by human operators.
In this paper we present a framework for solving in-station train dis-
patching problems, to support human operators in dealing with such
task. We employ automated planning languages and tools for solving
the task: PDDL+ for the specification of the problem, and the ENHSP
planning engine, enhanced by domain-specific techniques, for solving the
problem. We carry out a in-depth analysis using real data of a station of
the North West of Italy, that shows the effectiveness of our approach and
the contribution that domain-specific techniques may have in efficiently
solving the various instances of the problem. Finally, we also present a
visualisation tool for graphically inspecting the generated plans.

Keywords: Railway Station · In-Station Train Dispatching · Automated
Planning · PDDL+.

1 Introduction

Railways play a significant economical role in our society for transporting either
goods or passengers, but the increasing volume of people and freight trans-
ported on railways is congesting the networks [2]. In-station train dispatching
is the problem of optimising the effective utilisation of available railway infras-
tructures for mitigating incidents and delays, and their impact. This is a fun-
damental problem for the whole railway network efficiency, and in turn for the
transportation of goods and passengers, given that stations are among the most
critical points in networks since a high number of interconnection of trains’ routes
holds therein. Despite such importance, nowadays in-station train dispatching is
mainly managed manually by human operators, while automatic support would
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be of great help for the wide railway network efficiency. The nature of real-
world applications often necessitates the representation of the dynamics of the
application in terms of mixed discrete/continuous behaviour, including effects,
processes, exogenous events, and continuous activities.

In this paper we present a framework (shown in Figure 2 of Section 3) for
solving in-station train dispatching problems, so to support human operators in
dealing with such task. We employ automated planning languages and tools: in
automated planning, knowledge is made explicit in a symbolic problem instance
models. When using the dominant family of planning knowledge representation
languages – PDDL [13], a problem is specified via an initial state and goal state,
that need to be reached. States, represented via fluents, can be changed by
applying actions, that are specified via preconditions and effects, represented as
a Boolean combination of predicates. A solution (plan) is a sequence of actions
such that a consecutive application of the actions in the plan (starting in the
initial state) results in a state that satisfies the goal [7]. Such classical planning
model has been recently extended, in order to handle mixed discrete/continuous
behaviours, resulting in PDDL+ [5], which thus allows to model hybrid domains.
In addition to actions, PDDL+ introduces continuous processes and exogenous
events, that are triggered by changes in the environment. Processes are used to
model continuous changes. PDDL+ applications in real-world domains include
real-time UAV manoeuvring [14], efficient battery load management [6], and
urban traffic control [12].

Our framework, that extends a research prototype [3], is organised in three
main elements: a preprocessor, that takes as input a description of the in-station
train dispatching problem, and outputs a PDDL+ instance model; a planning
engine, able to solve the PDDL+ problem and computing a plan, and a visuali-
sation tool. We present all such elements and focus on the planning engine, its
input/output, and its performance when employing the ENHSP planning engine
[15, 16], enhanced by domain-specific techniques. We carry out a detailed anal-
ysis using real data of a station of the North West of Italy, provided by Rete
Ferroviaria Italiana (RFI), that shows the effectiveness of our approach and the
contribution that the implemented domain-specific techniques may have in effi-
ciently solving the various instances of the problem.

The paper is structured as follows. Section 2 introduces our target problem.
Then, Section 3 presents our framework and its elements. The experimental
analysis of our modified planning engine on the real data is shown in Section 4.
The paper ends in Section 5 by discussing related work and drawing conclusions.

2 The In-Station Train Dispatching Problem

This section describes the in-station train dispatching problem, following the
formalisation introduced in [9].

A railway station can be represented as a tuple S = 〈G, I, P,E+, E−〉. G
is an undirected graph, G = 〈S,C〉, where S is the set of nodes representing
the track segments, i.e., the minimal controllable rail units, and C is a set of
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EASTWEST

Fig. 1: A subsection of the real-world railway station considered in the experi-
mental analysis. Flags are used to delimit itineraries; shorter segments represent
track segments; bold indicates platforms.

edges that defines the connections between them. Their status can be checked
via track circuits, that provide information about occupation of the segment
and about corresponding timings. Track segments are grouped in itineraries I.
Each itinerary i = 〈sm1, sm2, ..., smn〉 ∈ I is a path graph, subset of the graph
G, representing a sequence of connected track segments. Track segments are
grouped in itineraries manually by experts of the specific railway station, and a
track segment can be included in more than one itinerary. While track segments
are the minimal controllable units of a station, itineraries describe paths that
the trains will follow in order to move inside the station.

P is a set of platforms that can be used to embark/disembark the train. Each
platform p ∈ P has an associated set of track segments {si, . . . , sj} indicating
that trains stopping at those track segments will have access to the platform.

E+ is a set of entry points to the station from outside railway network; sim-
ilarly, E− is a set of exit points of the station that allow the train to leave the
station and enter the outside railway network. For the sake of this formalisation,
entry points and exit points behave like buffers of infinite size which are con-
nected to a single track segment that is the first (last) track segment the train
will occupy after (before) entering (exiting) the station.

Figure 1 provides a schematic representation of part of the Italian railway sta-
tion we use in our analysis. In the figure, track segments and platforms are easily
recognisable, and flags are used to indicate initial and end points of itineraries.
A track segment can be occupied by a single train at the time. For safety rea-
sons, a train is required to reserve an itinerary, and this can be done only if the
itinerary is currently not being used by another train. While a train is navigating
the itinerary, the track segments left by the train are released. This is done to
allow trains to early reserve itineraries even if they share a subset of the track
segments. A train t going through the controlled railway station is running a
route Rt in the station graph G, by reserving an itinerary and moving through
the corresponding track segments. A route Rt ⊆ I is a sequence of connected
disjointed itineraries which the train t will travel in the station. To simplify the
notation we define with h(Rt) ∈ S the first track segment of the route and with
l(Rt) ∈ S the last.

Considering a single railway station, there are four possible types of train:

– Origin: the train originates at the controlled station. It is initially at a plat-
form p, and it is required to leave the controlled station via a specified exit
point.
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Fig. 2: Architecture of the proposed framework.

– Destination: the controlled station is the final destination of the train. The
train is expected to reach the destination at time ta via a given entry point,
and is required to reach a platform to end its trip.

– Transit : the train is moving through the controlled station without making
a stop. The train is expected to reach the destination at time ta via a given
entry point, and is required to reach a specified exit point without stopping
at a platform.

– Stop: the train is making an intermediate stop at the controlled station. The
train is expected to reach the destination at time ta via a given entry point,
and is required to reach a specified exit point after a stop at a platform for
embarking/disembarking passengers.

The sequence of itineraries Rt = (i1, i2, ..., in), with ik ∈ I, which the train t will
run across have to be connected in the graph G.

A timetable is the schedule that includes information about when trains
should arrive at the controlled station, when they arrive at a platform, and
the time when they leave a platform.

We are now in the position to define the in-station train dispatching problem
as follows: Given a railway station S , a set of trains T and their current position
within the station or their time of arrival at the controlled station, find a route
for every train that allows to respect the provided timetable, as much as possible.

3 Description of the Framework

The architecture of the proposed framework is shown in Figure 2. An instance
can be defined using a provided interface, allowing a human operator to specify
the trains that need to be controlled, their type (i.e., Origin, Destination, Transit
or Stop) and the expected arrival/departure times, together with all the features
needed to cluster the historical tracks’ travel times (as explained in Section 3.1).
The prepocessor generates a PDDL+ problem instance, that can then be parsed
and reasoned upon by a dedicated optimised planning engine, by relying also
on information about the structure of the controlled station, timetables, and
historical data. The preprocessor uses the morphology of the station to compute
all the possible routes that a train can move through in order to reduce the
combinations that a plan may follow.
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The optimised planning engine is based on the well-known ENHSP [15, 16]
system, enhanced with domain-specific optimisations to improve performance
on in-station train dispatching instances. Finally, the generated plans can be
graphically shown by a visualisation tool, that aims at supporting a human
operator in checking and simulating the planned movements of trains inside the
station.

3.1 Preprocessor

The preprocessor is in charge of translating a given problem instance into a
PDDL+ problem instance, so that it can be solved by a PDDL+ planning engine.
We can define a PDDL+ problem model as a t-uple 〈I,G,A,O〉. I is a description
of the initial state, that characterises the initial state of the world. G is the list
of goals that must be achieved. A is the set of actions, events, and processes that
are used to model the evolution of the world. Actions are under the control of
the planning engine, while events and processes are exogenous and are triggered
automatically when the corresponding preconditions are met. Processes are used
to model continuous changes, while events are instantaneous changes of the state
of the world. Finally, O is the list of objects involved in the problem.

To perform its task, the preprocessor relies on additional data provided by
Rete Ferroviaria Italiana (RFI). Here we introduce the provided data, and de-
scribe the structure of the PDDL+ model that is generated.

Data provided. RFI provided the access to the data of 5 months (January
to May 2020) of train movements of one medium-sized railway station of the
Liguria region, situated in the North West of Italy. A subsection of the station is
shown in Figure 1: the station has been anonymised, and the complete structure
can not be provided due to confidentiality issues. The modelled station includes
130 track segments (out of which 34 are track switches), 107 itineraries, 10
platforms, 3 entry points, and 3 exit points. The average number of trains per day
was 130 before COVID-19-related lockdown and 50 after movement restrictions
were enforced in Italy. The travel times information needed by the PDDL+
model, e.g., the time needed by each train to complete a track segment, to leave
a platform, maximum times, etc., were calculated by leveraging on historical
data provided by RFI. The whole dataset of historical tracks’ travel times were
clustered by a variety of features, such as train characteristics (e.g., passengers,
freight, high speed, intercity, etc.), station transit characteristics (i.e., overall
train trip inside the rail-network, and entry and exit points), weekdays, and
weather conditions. According to the characteristics of the problem at hand,
it is then possible to estimate the travel times of every train by assigning the
average value of the times inside the corresponding cluster.

Times. The travel times information are encoded in the PDDL+ model using
the following fluents:
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Fig. 3: A flow chart showing the movements of the train inside the station based
on its type. Rectangles represent events and squared rectangles represent actions.
Processes are omitted for clarity.

– arrivalTime(t): the time at at which the train t arrives at the controlled
station.

– segmentLiberationTime(t,s,i): the amount of time it takes for train t to
free segment s ∈ in since it starts moving on itinerary i.

– timeToRunItinerary(t,i): the amount of time it takes for train t to move
through itinerary i.

– stopTime(t,p): the expected amount of time it takes for train t to em-
bark/disembark passengers or goods at platform p.

– timeToOverlap(t,in,im): the time it takes for train t to completely leave
itinerary in and move to itinerary im.

– timetableArrivalTime(t) (timetableDepartureTime(t)): the time in which
the train t should arrive at (departure from) a platform, according to the
official timetable.

Movement of trains. In this section we focus on the PDDL+ structures used
to model the movement of trains per type. An overview of the events and ac-
tions used to model trains’ movement is provided in Figure 3. For the sake of
readability, we say that a Boolean predicate is activated (de-activated) when its
value is made True (False).

Transit train. If a train is of type Transit it will traverse the station without
stopping to embark/disembark passengers or goods at any of the platforms.
The movement of the train through the station is regulated using the following
PDDL+ constructs (listed in application’s order):

– A process incrementTime encodes an explicit notion of passing time by
increasing the fluent time.

– An event arrivesAtEntryPoint(t,e+) is triggered when the fluent time

reaches the value of the predicate arrivalTime(t), and it requires that the
predicate trainEntersFromEntryPoint(t,e+), indicating the entry point
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for the train, is active. The event makes true the predicate trainHasAr-

rivedAtStation(t) signalling that the train is at the gateway of the station
ready to enter.

– An action entersStation(t,e+,i) can be used by the planning engine to
let the train t enter the station from the entry-point e+, using the itinerary
i. The precondition that must hold in order for this action to be taken are:
(i) the entry point is connected to the itinerary i, and (ii) the itinerary i
is free, i.e., none of its track segments are occupied by a train. As a re-
sult of this action i is reserved by t by blocking all the track segments in it
via dedicated predicates trackSegBlocked(s), and by the predicate train-
InItinerary(t,i).

– A process incrementTimeReservedItinerary(i) keeps track of how many
seconds have passed since the reservation of an itinerary i by any train,
updating the fluent tReservedItinerary(i) accordingly.

– The event completesTrackSeg(t,s,i) is triggered when a train t has left
the track segment s. This is triggered when tReservedItinerary(i) has
reached the value specified in the fluent segmentLiberationTime(t,s,i),
and as a result the segment s is freed by de-activating the predicate track-

SegBlocked(s).
– As soon as the train has reached, with its head, the end of the itinerary (so

when tReservedItinerary(i) is greater than timeToRunItinerary(t,i)),
the event completesItinerary(t,i) is triggered. It activates a predicate
trainHasCompletedItinerary(t,i).

– An action beginsOverlap(t,in,im) can be used by the planning engine to
encode the movement of train t from itinerary in to itinerary im. This action
can be used only if trainHasCompletedItinerary(t,in) is active and all
the track segments s ∈ in are not occupied by another train.

– A process incrementOverlapTime(t,in,im) keeps track of the time a train
t is taking to move all its carriages through the joint that connects in to im
by increasing the value of the fluent timeElapsedOverlapping(t,in,im).

– An event endsOverlap(t,in,im) is triggered when the fluent that counts
the time of overlap timeElapsedOverlapping(t,in,im) is greater than the
fluent timeToOverlap(t,in,im). The event signals that the train is no longer
on itinerary in deactivating the predicates trainInItinerary(t,in) and
resetting the value of function tReservedItinerary(in) to 0.

– Finally, when a train has completed its routes of itineraries, and with the last
itinerary i has reached the segment leading to an exit point of the station
e−, the action exitsStation(t, i, e-) allows the train to exit the station
activating the predicate trainHasExitedStation(t).

Part of the described constructs are shown in Figure 4. The goal for a train t of
type Transit is to reach the state in which the predicate trainHasExitedSta-

tion(t) is active.

Stop train. A train of this type needs to stop at a platform before exiting the
station, as it is making an intermediate stop at the controlled station. Three
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(:action entersStation
:parameters
(T1 - train EP1 - entryP
I1-2 itinerary)

:precondition (and
(trainIsAtEndpoint T1 EP1)
...
(not (trainHasExitedStation T1))
(not (trainHasEnteredStation T1))
(not (trackSegBlocked cdb1))
(not (trackSegBlocked cdb2))
...
(not (trackSegBlocked cdb6)))

:effect (and
(not (trainIsAtEndpoint T1 EP1))
(itineraryIsReserved I1-2)
(trainInItinerary T1 I1-2)
(trainHasEnteredStation T1)
(trackSegBlocked cdb1)
(trackSegBlocked cdb2)
...
(trackSegBlocked cdb6)))

(:event arrivesAtEntryPoint
:parameters (T1 - train EP1 - entryP)
:precondition (and
(>= time (ArrivalTime T1))
(not (trainHasEnteredStation T1))
(trainEntersFromEntryPoint T1 EP1))

:effect (and (trainIsAtEndpoint T1 EP1)
(trainHasArrivedAtStation T1)
(assign (trainEntryIndex T1)
(trainsArrivedAtEndpoint EP1))
(increase (trainsArrivedAtEndpoint EP1) 1 )))

(:event completeTrackSeg
:parameters
(T1 - train cb1 - trackSeg I1-2 itinerary)

:precondition (and
(>= (timeReservedIt I1-2) 29)
(trainInItinerary T1 I1-2)
(trackSegBlocked cdb1))

:effect (and
(not (trackSegBlocked cdb1))))

(:process incrementTimeReservedItinerary
:parameters(I1-2 - itinerary)
:precondition (itineraryIsReserved I1-2)
:effect (increase
(timeElapsedReservedItinerary I1-2) #t ))

Fig. 4: The partially grounded action entersStation(t,e+,in) (left), events
arrivesAtEntryPoint(t,e+) and completesTrackSeg(t,s,in), and process
incrementTimeReservedItinerary(in) (right).

other PDDL+ constructs are added with respect to a train of type Transit in
order to model this behaviour:

– The action beginStop(t,i,p) is used to allow the planning engine to stop
the train t at a platform p after having completed itinerary i, and having
the platform at the end of the itinerary. The effect of this action is to signal
that the train is at the platform by activating the predicate trainIsStop-

pingAtStop(t,p) and all the track segments s ∈ p are blocked in order to
achieve mutual exclusion on the platform.

– A process increaseTrainStopTime(t) keeps track of the time spent by the
train at a platform. This is done by increasing the value of the function
trainStopTime(t) over time.

– The train t can begin its route towards the exit point only after a time
stopTime(t) has passed – this it to allow passengers or goods to embark /
disembark. A train cannot leave the platform before the timetabled depar-
ture, set via the function timetableDepartureTime(t). For this reason the
event endStop(t,i,p) that signals that the train is ready to leave the plat-
form can be triggered only if the fluent trainStopTime(t) has reached the
value set in the predicate stopTime(t) and the fluent time is greater than
timetableDepartureTime(t). This event activates the predicate trainHas-
Stopped(t).
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(:action beginStop
:parameters
(T1 - train I3 - itinerary
S1 - platform)

:precondition (and
(trainHasCompletedItinerary T1 I3)
(trainInItinerary T1 I3)
(not (trainIsOverlapping T1))
(not (stopIsOccupied S1))
(not (trainIsStopping T1))
(not (trainHasStoppedAtStop T1 S1))

...)
:effect (and
(trainIsStoppingAtStop T1 S1)
(trainIsStopping T1)
(assign (trainStopTime T1) 0 )
(stopIsOccupied S1)
(not (itineraryIsReserved I3))
(not (trackSegBlockedtrackSegC))

...
(not (trackSegBlockedtrackSegL))))

(:process increaseTrainStopTime
:parameters(T1 - train)
:precondition (trainIsStopping T1)
:effect
(increase (trainStopTime T1) #t ))

(:event endStop
:parameters
(T1 - train I3 - itinerary S1 - platform)

:precondition (and
(>= (trainStopTime T1) 5 )
(>= time (DepartTime T1))
(trainInItinerary T1 I3)
(trainIsStoppingAtStop T1 S1)
(stopIsOccupied S1))

:effect (and
(not (trainIsStoppingAtStop T1 S1))
(not (trainIsStopping T1))
(trainHasStoppedAtStop T1 S1)
(trainHasStopped T1)
(not (stopIsOccupied S1))))

Fig. 5: The partially grounded action beginStop(t,in,pk) (left), process in-

creaseTrainStopTime(t) and event endStop(t,in,pk) (right).

The train t will then begin its trip towards the exit point with the action
beginsOverlap(t,in,im) where in is the itinerary where the platform is located,
and im is a subsequent connected itinerary. Part of the described constructs are
shown in Figure 5. For a train of type Stop the goal is to reach a state in which
the predicates trainHasExitedStation(t) and trainHasStopped(t) are both
active.

Origin train. A train of type Origin needs to specify the platform the train
is parked at. For this reason the predicates trainIsStoppingAtStop(t,p) and
trainHasStopped(t) are activated at the initial state of the problem, indicating
the train t is departing from platform p. This type of train resemble the train
of type Stop but without the possibility to enter the station, since it is already
inside it at the beginning of the plan. Only one action is introduced in order to
model the behaviour of an Origin train:

– An action beginVoyage(t,p,i) can be used by the planning engine to allow
the departure of train t from platform p via itinerary i. This action can not
be executed before the timetabled departure time timetableDeparture-

Time(t).

The goal of a train of type Origin are the same of a train of type Transit : it
must have exited the station.

Destination train. A train of type Destination behaves like an Stop train but,
after having reached the platform, it will remain parked there. For this reason
no additional PDDL+ constructs are needed. A train of type Destination will
simply have in its goal the need to reach a state in which the predicate trainIs-
Stopping(t) is active, meaning so that the train t has reached its stop.
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3.2 Optimised Planning Engine

The considered domain-independent PDDL+ planning engine ENHSP is based
on a forward search approach on the discretised PDDL+ planning instance. In
other words, the planning engine deals with time-related aspects by discretising
it using a given delta value. We enhanced ENHSP in three main ways: adaptive
delta, domain-specific heuristic, and constraints.

Adaptive Delta. Traditionally, PDDL+ planning engines exploit a fixed
time discretisation step for solving a given instance. In the proposed model, it is
possible to know a-priori when events will be triggered, so it is possible to exactly
predict when the world will change. It is therefore possible to exploit a dynamic
time discretisation. When nothing happens, there is no need to discretise time.
This is similar in principle to the approach exploited by decision-epoch planning
engines for dealing with temporal planning problems [4].

Specialised Heuristic. Following the traditional A* search settings, the
cost of a search state z is calculated as f(z) = g(z)+h(z), where g(z) represents
the cost to reach z, while h(z) provides an heuristic estimation of the cost needed
to reach a goal state from z. In our specialisation, g(z) is calculated as the elapsed
modelled time from the initial state to z. h(z) is a domain-specific heuristic
calculated according to the following equation:

h(z) =
∑

t∈T (z)

ρt(z) + πt(z) (1)

where T (z) is the set of trains of the given problem that did not yet achieve
their goals at z. ρt(z) is a quantity that measures the time that, starting from
the current position, the considered train needs to reach its final destination and
is computed as follows:

ρt(z) = max
R∈Rt(z)

∑
in∈R

timeToRunItinerary(t, in) (2)

where Rt(z) is the set containing all the possible routes R, as sequences of
itineraries, that a train t can run across in order to reach its final destination (i.e.,
an exit point or a platform) from the state z. Since the initial and final position
of every train is known a-priori and based upon its type (Origin, Destination,
Stop, Transit) the set can be computed beforehand and used in the search phase.

The penalisation method πt(z) gives a very high penalisation value P for
each goal specified for the considered train t that has not yet been satisfied at
state z. For instance, if a train of type Stop has not yet entered the station, a
penalisation of 2 × P is given to the heuristic since there are two goals related
to the train that has not been satisfied in the initial state, i.e., stopping at a
platform and leaving the station from an exit-point.

Constraints. The planning engine has been extended by explicitly consid-
ering 3 set of constraints. The first set limits the time a train is allowed to stay
in the controlled station. The other sets limit, respectively, the time passed from
the arrival of the train in the station, and the time spent stopping at a platform.
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Fig. 6: Two screenshots from the visualisation tool capturing the itineraries oc-
cupied by three trains at different time steps. Top: The red train is moving from
the West entry point to platform 1 (counting from the bottom), the blue train
is stopped at platform 4 and the green train is approaching the East exit point.
Bottom: The red train has stopped at the platform and is moving towards the
East exit point, the blue and the green trains are leaving the station from the
West and East exit points, respectively.

The idea behind such constraints is to avoiding situations where trains are left
waiting for long periods of time, occupying valuable resources. The maximum
times are calculated a-priori, according to historical data, and depends on the
structure of the railway station.

3.3 Visualisation Tool

The last element of the framework shown in Figure 2 is the visualisation tool.
This is a pivotal tool, that allows to visually inspect the generated plans and can
be used by domain experts to compare alternative solutions, and by AI experts
to validate the plans.

Figure 6 shows two screenshots from the visualisation tool capturing the
itineraries occupied by three trains (red, green, blue) in two subsequent time
instants. The tool can parse a solution plan, represented using the PDDL+
standard, and extracts the movements of trains and their position at each time
step. The itineraries are then coloured based on the train that is currently moving
on them. The tool provides an interface that allows the user to move forward
or backward in time, to see how the network conditions evolve. In the example
shown in Figure 6, the red train is moving from the West entry point to platform
1 (counting from the bottom), the blue train is stopped at platform 4 and will
soon move to the West exit point and the green train is approaching the East
exit point.

4 Experimental Analysis

The aim of this experimental analysis is to assess the importance of the domain-
specific techniques implemented in the planning engine. As a first step, to un-
derstand that the proposed framework can accurately model the dynamics of
the in-station train dispatching problem, we validated on historical data.
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Fig. 7: The CPU-time needed for planning instances with an increasing number
of trains using different combinations of domain-specific optimisation techniques.

To perform this analysis, we considered the 5 months of historical data, and
encoded all the registered movements of trains under the form of PDDL+ plans
– as if the movements were generated using our approach. We then validated the
plans against our PDDL+ model with a PDDL+ validator. This step checks if
the PDDL+ model presented in the paper is capable of representing the observed
movements. Remarkably, the validation process showed that all the movements
observed in the 5 months of historical data were correctly validated. This result
also indicates that the proposed modelisation, and the overall framework, can
provide an encompassing framework for comparing different strategies to deal
with recurrent issues, and for testing new train dispatching solutions.

We can now turn our attention to assessing the usefulness of the improve-
ments proposed in Section 3.2. To perform this analysis, we selected the day –
in February 2020, before the start of the COVID-19 lockdown in Italy – with
the minimum mean squared deviation of recorded train timings from the offi-
cial timetable. This was done to guarantee that no emergency operations were
executed by the human operators. We considered the evening peak hour of the
day, 17:00-20:00, when commuters return at home. During the selected time-slot
31 trains move through the station. We considered different time windows of
the considered 3-hours period to generate instances with a increasing number of
trains to be controlled. These instances are then tested using the planning en-
gine with different combinations of the domain-specific optimisations techniques.
Figure 7 shows the CPU planning time required by the 8 combinations to deal
with increasingly large instances. The combination labelled All-Off considers
ENHSP run using the default settings, and none of the optimisation techniques
introduced in this paper. The All-On label indicates instead the planning engine
run using all the optimisations. Finally, labels AD, Heu, and Const are used to
indicate the use of, respectively, adaptive delta, domain-specific heuristic, and
constraints. The analysis was performed with a cut-off time of 60 CPU-time sec-
onds, on a 2.5GHz Intel Core i7 Quad-processors with 16GB of memory made
available and a Mac OS operating system.

According to the results in Figure 7, the All-Off combination can plan no
more than 5 trains. Inspecting the instances with more that 5 trains it can be
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seen that, while the first 5 trains are close to each other, the 6th train arrives
at the station a couple of minutes after the others. This gap of time, in which
nothing happens, causes the planning engine to wast a significant amount of time
in trying to identify actions to apply to reach the goal, at every discretisation
delta. The use of the adaptive delta allows the planning engine to skip between
times where nothing happens, therefore it significantly reduces the amount of
computations made by the planning engine, solving up to 8 trains. The use of
the domain-specific heuristic alone can solve instances up to 11 trains included.
Notably, there is a significant synergy between the heuristic and the adaptive
delta. When these two optimisations are activated, the planning engine perfor-
mance are significantly boosted, given that with these two techniques enabled
we are able to solve all instances, as for the All-On label. On the other hand, the
use of the constraints can provide some performance improvement, but limited.
With regards to the shape of the generated solutions, we observed that all the
approaches lead to similar solutions: there are no major differences from this
perspective. We further experimented with other peak hours (07:30-10:00 and
12:00-14:30), and results are similar to the ones shown.

Summarising, the performed experiments indicate that the use of the spe-
cialised heuristic is the single most important component of the domain-specific
planning engine. The adaptive delta plays an important role as well, but their
synergic combination allows to solve all evaluated instances. The use of con-
straints provides some improvement, but not as significant as the other elements.

5 Related Work and Conclusions

Automated approaches have been employed for solving variants of the in-station
train dispatching problem. Mixed-integer linear programming models have been
introduced in [11] for controlling a metro station. The experimental analysis
demonstrated the ability of the proposed technique to effectively control a metro
station but also highlighted scalability issues when it comes to control larger and
more complex railway stations. More recently, constraint programming models
have been employed in [8] for performing in-station train dispatching in a large
Indian terminal: this approach is able to deal with a large railway station, but
only for very short time horizons, i.e., less than 10 minutes. In [1] a hybrid
approach that extends Answer Set Programming (ASP) [10] is used to tackle real-
world train scheduling problems, involving routing, scheduling, and optimisation.

In this paper, we presented a framework for solving in-station train dispatch-
ing, focused on modelling the problem with the PDDL+ language, able to specify
mixed discrete/continuous behaviour of railway systems, and solving with the
ENHSP planning engine enhanced with domain-specific techniques. Results on
real data of a station of the North West of Italy, provided by Rete Ferroviaria
Italia, show that our solution is efficient, scalable with regards to the number of
trains and can handle large time horizons, for the station at hand. Future work
will focus on modelling additional stations of the North of Italy, and to run field
tests of the proposed framework.



14 M. Cardellini et al.

Acknowledgements

This work has been partially funded by Hitachi Rail STS through the RAIDLab
(Railway Artificial Intelligence and Data Analysis Laboratory), a joint labora-
tory between Hitachi Rail STS and University of Genoa. This work has been sup-
ported by RFI (Rete Ferroviaria Italiana) who provided the data for the analysis
(we sincerely thank Renzo Canepa for his support). Mauro Vallati was supported
by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train
scheduling with hybrid answer set programming. Theory and Practice of Logic
Programming pp. 1–31 (2020)

2. Bryan, J., Weisbrod, G.E., Martland, C.D.: Rail freight solutions to roadway con-
gestion: final report and guidebook. Transportation Research Board (2007)

3. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train
dispatching: A PDDL+ planning approach. In: Proc. of ICAPS (2021)

4. Cushing, W., Kambhampati, S., Weld, D.S.: When is temporal planning really
temporal? In: Proc. of IJCAI. pp. 1852–1859 (2007)

5. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res. 27, 235–297 (2006)

6. Fox, M., Long, D., Magazzeni, D.: Plan-based policies for efficient multiple battery
load management. J. Artif. Intell. Res. 44, 335–382 (2012)

7. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers (2004)

8. Kumar, R., Sen, G., Kar, S., Tiwari, M.K.: Station dispatching problem for a large
terminal: A constraint programming approach. Interfaces 48(6), 510–528 (2018)

9. Lamorgese, L., Mannino, C.: An exact decomposition approach for the real-time
train dispatching problem. Operations Research 63(1), 48–64 (2015)

10. Lifschitz, V.: Answer set planning. In: International Conference on Logic Program-
ming and Nonmonotonic Reasoning. pp. 373–374. Springer (1999)

11. Mannino, C., Mascis, A.: Optimal real-time traffic control in metro stations. Op-
erations Research 57(4), 1026–1039 (2009)

12. McCluskey, T.L., Vallati, M.: Embedding automated planning within urban traffic
management operations. In: Proc. of ICAPS. pp. 391–399 (2017)

13. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL - The Planning Domain Definition Language. Tech. rep.,
Yale Center for Computational Vision and Control (1998)

14. Ramı́rez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A.R.,
Scala, E., Zamani, M.: Integrated hybrid planning and programmed control for
real time UAV maneuvering. In: Proc. of AAMAS. pp. 1318–1326 (2018)
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