1,160 research outputs found
Collisionless energy absorption in the short-pulse intense laser-cluster interaction
In a previous Letter [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by
means of three-dimensional particle-in-cell simulations and a simple
rigid-sphere model that nonlinear resonance absorption is the dominant
collisionless absorption mechanism in the intense, short-pulse laser cluster
interaction. In this paper we present a more detailed account of the matter. In
particular we show that the absorption efficiency is almost independent of the
laser polarization. In the rigid-sphere model, the absorbed energy increases by
many orders of magnitude at a certain threshold laser intensity. The
particle-in-cell results display maximum fractional absorption around the same
intensity. We calculate the threshold intensity and show that it is
underestimated by the common over-barrier ionization estimate.Comment: 12 pages, 13 figures, RevTeX
Attractive Potential around a Thermionically Emitting Microparticle
We present a simulation study of the charging of a dust grain immersed in a
plasma, considering the effect of electron emission from the grain (thermionic
effect). It is shown that the OML theory is no longer reliable when electron
emission becomes large: screening can no longer be treated within the
Debye-Huckel approach and an attractive potential well forms, leading to the
possibility of attractive forces on other grains with the same polarity. We
suggest to perform laboratory experiments where emitting dust grains could be
used to create non-conventional dust crystals or macro-molecules.Comment: 3 figures. To appear on Physical Review Letter
Investigation of Particle-in-Cell Acceleration Techniques for Plasma Simulations
COLISEUM is an application framework that integrates plasma propagation schemes and arbitrary 3D surface geometries. Using Particle-in-Cell (PIC) schemes to model the plasma propagation high fidelity modeling of the plasma and its interactions with the surfaces is possible. In order to improve the computational performance of the Particle-in-Cell scheme with Direct Simulation Monte Carlo collision modeling (PIC-DSMC) within COLISEUM, AQUILA, acceleration techniques have been developed that significantly decrease the amount of CPU time needed to obtain a steady-state solution. These techniques have been demonstrated to decrease the CPU time from 3 to 24 times with little appreciable differences in the global particle properties and number densities. This work investigates the differences in the local plasma properties that result from the application of the different acceleration techniques. Results show that the subcycling acceleration scheme does accurately capture the macroscopic flow properties (such as particle counts and species number densities) and the velocity distributions in the lower density regions of the flow field. However, the higher density regions of the flow field (such as in the main beam of the plasma source) show significant differences that are believed to be associated with the simplifying assumptions used in the original collision modeling scheme within the PIC-DSMC module AQUILA
New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure
A new combined PIC-MCC approach is developed for accurate and fast simulation
of a radio frequency discharge at low gas pressure and high density of plasma.
Test calculations of transition between different modes of electron heating in
a ccrf discharge in helium and argon show a good agreement with experimental
data.
We demonstrate high efficiency of the combined PIC-MCC algorithm, especially
for the collisionless regime of electron heating.Comment: 6 paged, 8 figure
An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to
model EM wave emission generation in the context of solar type III radio
bursts. The model studies generation of EM waves by a super-thermal, hot beam
of electrons injected into a plasma thread that contains uniform longitudinal
magnetic field and a parabolic density gradient. In effect, a single magnetic
line connecting Sun to earth is considered, for which several cases are
studied. (i) We find that the physical system without a beam is stable and only
low amplitude level EM drift waves (noise) are excited. (ii) The beam injection
direction is controlled by setting either longitudinal or oblique electron
initial drift speed, i.e. by setting the beam pitch angle. In the case of zero
pitch angle, the beam excites only electrostatic, standing waves, oscillating
at plasma frequency, in the beam injection spatial location, and only low level
EM drift wave noise is also generated. (iii) In the case of oblique beam pitch
angles, again electrostatic waves with same properties are excited. However,
now the beam also generates EM waves with the properties commensurate to type
III radio bursts. The latter is evidenced by the wavelet analysis of transverse
electric field component, which shows that as the beam moves to the regions of
lower density, frequency of the EM waves drops accordingly. (iv) When the
density gradient is removed, electron beam with an oblique pitch angle still
generates the EM radiation. However, in the latter case no frequency decrease
is seen. Within the limitations of the model, the study presents the first
attempt to produce simulated dynamical spectrum of type III radio bursts in
fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle
(non-gyrotropic) electron beam, that is an alternative to the plasma emission
classical mechanism.Comment: Physics of Plasmas, in press, May 2011 issue (final accepted version
On particle acceleration and trapping by Poynting flux dominated flows
Using particle-in-cell (PIC) simulations, we study the evolution of a
strongly magnetized plasma slab propagating into a finite density ambient
medium. Like previous work, we find that the slab breaks into discrete magnetic
pulses. The subsequent evolution is consistent with diamagnetic relativistic
pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the
actual electron to proton mass ratio and focus on understanding trapping vs.
transmission of the ambient plasma by the pulses and on the particle
acceleration spectra. We find that the accelerated electron distribution
internal to the slab develops a double-power law. We predict that emission from
reflected/trapped external electrons will peak after that of the internal
electrons. We also find that the thin discrete pulses trap ambient electrons
but allow protons to pass through, resulting in less drag on the pulse than in
the case of trapping of both species. Poynting flux dominated scenarios have
been proposed as the driver of relativistic outflows and particle acceleration
in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio
Waves and instability in a one-dimensional microfluidic array
Motion in a one-dimensional (1D) microfluidic array is simulated. Water
droplets, dragged by flowing oil, are arranged in a single row, and due to
their hydrodynamic interactions spacing between these droplets oscillates with
a wave-like motion that is longitudinal or transverse. The simulation yields
wave spectra that agree well with experiment. The wave-like motion has an
instability which is confirmed to arise from nonlinearities in the interaction
potential. The instability's growth is spatially localized. By selecting an
appropriate correlation function, the interaction between the longitudinal and
transverse waves is described
Multi-GPU Acceleration of the iPIC3D Implicit Particle-in-Cell Code
iPIC3D is a widely used massively parallel Particle-in-Cell code for the
simulation of space plasmas. However, its current implementation does not
support execution on multiple GPUs. In this paper, we describe the porting of
iPIC3D particle mover to GPUs and the optimization steps to increase the
performance and parallel scaling on multiple GPUs. We analyze the strong
scaling of the mover on two GPU clusters and evaluate its performance and
acceleration. The optimized GPU version which uses pinned memory and
asynchronous data prefetching outperform their corresponding CPU versions by
5-10x on two different systems equipped with NVIDIA K80 and V100 GPUs.Comment: Accepted for publication in ICCS 201
Statistical kinetic treatment of relativistic binary collisions
In particle-based algorithms, the effect of binary collisions is commonly
described in a statistical way, using Monte Carlo techniques. It is shown that,
in the relativistic regime, stringent constraints should be considered on the
sampling of particle pairs for collision, which are critical to ensure
physically meaningful results, and that nonrelativistic sampling criteria
(e.g., uniform random pairing) yield qualitatively wrong results, including
equilibrium distributions that differ from the theoretical J\"uttner
distribution. A general procedure for relativistically consistent algorithms is
provided, and verified with three-dimensional Monte Carlo simulations, thus
opening the way to the numerical exploration of the statistical properties of
collisional relativistic systems.Comment: Accepted for publication as a Rapid Communication in Phys. Rev.
- …