9,867 research outputs found

    Second-order hyperbolic Fuchsian systems. Gowdy spacetimes and the Fuchsian numerical algorithm

    Full text link
    This is the second part of a series devoted to the singular initial value problem for second-order hyperbolic Fuchsian systems. In the first part, we defined and investigated this general class of systems, and we established a well-posedness theory in weighted Sobolev spaces. This theory is applied here to the vacuum Einstein equations for Gowdy spacetimes admitting, by definition, two Killing fields satisfying certain geometric conditions. We recover, by more direct and simpler arguments, the well-posedness results established earlier by Rendall and collaborators. In addition, in this paper we introduce a natural approximation scheme, which we refer to as the Fuchsian numerical algorithm and is directly motivated by our general theory. This algorithm provides highly accurate, numerical approximations of the solution to the singular initial value problem. In particular, for the class of Gowdy spacetimes under consideration, various numerical experiments are presented which show the interest and efficiency of the proposed method. Finally, as an application, we numerically construct Gowdy spacetimes containing a smooth, incomplete, non-compact Cauchy horizon.Comment: 22 pages. A shortened version is included in: F. Beyer and P.G. LeFloch, Second-order hyperbolic Fuchsian systems and applications, Class. Quantum Grav. 27 (2010), 24501

    The alpha-particle in nuclear matter

    Full text link
    Among the light nuclear clusters the alpha-particle is by far the strongest bound system and therefore expected to play a significant role in the dynamics of nuclei and the phases of nuclear matter. To systematically study the properties of the alpha-particle we have derived an effective four-body equation of the Alt-Grassberger-Sandhas (AGS) type that includes the dominant medium effects, i.e. self energy corrections and Pauli-blocking in a consistent way. The equation is solved utilizing the energy dependent pole expansion for the sub system amplitudes. We find that the Mott transition of an alpha-particle at rest differs from that expected from perturbation theory and occurs at approximately 1/10 of nuclear matter densities.Comment: 9 pages RevTex file, 1 figure, submitted to Phys. Lett.

    Deuteron formation in nuclear matter

    Get PDF
    We investigate deuteron formation in nuclear matter at finite temperatures within a systematic quantum statistical approach. We consider formation through three-body collisions relevant already at rather moderate densities because of the strong correlations. The three-body in-medium reaction rates driven by the break-up cross section are calculated using exact three-body equations (Alt-Grassberger-Sandhas type) that have been suitably modified to consistently include the energy shift and the Pauli blocking. Important quantities are the lifetime of deuteron fluctuations and the chemical relaxation time. We find that the respective times differ substantially while using in-medium or isolated cross sections. We expect implications for the description of heavy ion collisions in particular for the formation of light charged particles at low to intermediate energies.Comment: 19 pages, 5 figure

    Medium corrections in the formation of light charged particles in heavy ion reactions

    Get PDF
    Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals. Microscopic description of composites in the medium follows the Dyson equation approach combined with the cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion collision changes in a significant manner in effect of the medium modification of production and absorption processes.Comment: 16 pages, 6 figure
    corecore