509 research outputs found

    Oral corticosteroids dependence and biologic drugs in severe asthma: Myths or facts? a systematic review of real‐world evidence

    Get PDF
    Airway inflammation represents an important characteristic in asthma, modulating airflow limitation and symptom control, and triggering the risk of asthma exacerbation. Thus, although corticosteroids represent the cornerstone for the treatment of asthma, severe patients may be dependent on oral corticosteroids (OCSs). Fortunately, the current humanised monoclonal antibodies (mAbs) benralizumab, dupilumab, mepolizumab, omalizumab, and reslizumab have been proven to induce an OCS‐sparing effect in randomized controlled trials (RCTs), thus overcoming the problem of OCS dependence in severe asthma. Nevertheless, a large discrepancy has been recognized between selected patients enrolled in RCTs and non‐selected asthmatic populations in real‐world settings. It is not possible to exclude that the OCS‐sparing effect of mAbs resulting from the RCTs could be different than the real effect resulting in clinical practice. Therefore, we performed a systematic review and correlation analysis to assess whether mAbs are effective in eliciting an OCS‐sparing effect and overcoming the OCS dependence in severe asthmatic patients in real‐world settings. Overall, real‐world studies support the evidence that OCS dependence is a real condition that, however, can be found only in a small number of really severe asthmatic patients. In most patients, the dependence on OCS can be related to modifying factors that, when adequately modulated, may lead to a significant reduction or suspension of OCS maintenance. Conversely, in severe asthmatics in whom OCS resistance is proved by a high daily dose intake, mAbs allow reversion of the OCS dependence, leading to the suspension of OCS therapy in most patients or >50% reduction in the daily OCS dose

    Clinical manifestations in patients with PI*MMMalton genotypes. A matter still unsolved in alpha-1 antitrypsin deficiency

    Get PDF
    We report the genetic variants associated with alpha-1 antitrypsin deficiency (AATD) in 117 patients admitted to our outpatient clinic and characterized by a serum concentration of AAT lower than 113 mg/dL. We focused on the M-like heterozygous variant of the SERPINA1 gene called PI*MMMalton, and describe three patients with this variant. While the role of homozygous AATD in liver and pulmonary disease is well established, the association between heterozygous AATD and chronic liver and pulmonary disease is still under investigation. The PI*MMMalton genotype was found in 5.8% of patients with a pathological genotype of AATD and in 14.3% of the subjects when considering only those with intermediate AATD. There were no liver or renal abnormalities in patients with the PI*MMMalton genotype. The PI*MMMalton patients included here showed a normal liver function, and none had renal function abnormalities or abdominal aortic aneurysm. Only a prevalence of lung disease was detected

    The COPD assessment test and the modified Medical Research Council scale are not equivalent when related to the maximal exercise capacity in COPD patients

    Get PDF
    Introduction: The management and treatment of Chronic Obstructive Pulmonary Disease (COPD) are based on a cutoff point either of ≄ 10 on the COPD Assessment Test (CAT) or of ≄ 2 of the Medical Research Council (mMRC). Up to now, no study has assessed the equivalence between CAT and mMRC, as related to exercise tolerance in COPD. The aim of this study was to investigate as primary outcome the relationship between CAT and mMRC and maximal exercise capacity in COPD patients. We also evaluated as secondary outcome the agreement between CAT (≄ 10) and mMRC (≄ 2) to categorize patients according to their exercise tolerance. Material and methods: 118 consecutive COPD patients (39 females), aged between 47 and 85 years with a wide range of airflow obstruction and lung hyperinflation were studied. Maximal exercise capacity was assessed by cardiopulmonary exercise test. Results: CAT and mMRC scores were significantly related to VO2 peak (p<0.01). CAT (≄ 10) and mMRC (≄ 2) have a high likelihood to be associated to a value of VO2 peak less than 15.7 and 15.6 mL/kg/min, respectively. The interrater agreement between CAT (≄ 10) and mMRC (≄ 2) was found to be fair (Îș = 0.20) in all patients but slight when they were subdivided in those with VO2 peak < 15 mL/kg/min and in those with VO2 peak ≄ 15 mL/kg/min (Îș = 0.10 and Îș = 0.20 respectively). Conclusion: This study shows that CAT and mMRC are useful tools to predict exercise tolerance in COPD, but they cannot be considered as supplementary measures

    The impact of monoclonal antibodies on airway smooth muscle contractility in asthma: A systematic review

    Get PDF
    Airway hyperresponsiveness (AHR) represents a central pathophysiological hallmark of asthma, with airway smooth muscle (ASM) being the effector tissue implicated in the onset of AHR. ASM also exerts pro-inflammatory and immunomodulatory actions, by secreting a wide range of cytokines and chemokines. In asthma pathogenesis, the overexpression of several type 2 inflammatory mediators including IgE, IL-4, IL-5, IL-13, and TSLP has been associated with ASM hyperreactivity, all of which can be targeted by humanized monoclonal antibodies (mAbs). Therefore, the aim of this review was to systematically assess evidence across the literature on mAbs for the treatment of asthma with respect to their impact on the ASM contractile tone. Omalizumab, mepolizumab, benralizumab, dupilumab, and tezepelumab were found to be effective in modulating the contractility of the ASM and preventing the AHR, but no available studies concerning the impact of reslizumab on the ASM were identified from the literature search. Omalizumab, dupilumab, and tezepelumab can directly modulate the ASM in asthma, by specifically blocking the interaction between IgE, IL-4, and TSLP, and their receptors are located on the surface of ASM cells. Conversely, mepolizumab and benralizumab have prevalently indirect impacts against AHR by targeting eosinophils and other immunomodulatory effector cells promoting inflammatory processes. AHR has been suggested as the main treatable trait towards precision medicine in patients suffering from eosinophilic asthma, therefore, well-designed head-to-head trials are needed to compare the efficacy of those mAbs that directly target ASM contractility specifically against the AHR in severe asthma, namely omalizumab, dupilumab, and tezepelumab

    Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury

    Get PDF
    Background and objectives: Acute respiratory distress syndrome (ARDS) is a frequent form of hypoxiemic respiratory failure caused by the acute development of diffuse lung inflammation. Dysregulated systemic inflammation with persistent elevation of circulating inflammatory cytokines is the pathogenetic mechanism for pulmonary and extrapulmonary organ dysfunction in patients with ARDS. Glucocorticoids (GCs) have a broad range of inhibitory inflammatory effects, including inhibition of cytokines transcription, cellular activation and growth factor production. They inhibit the inflammatory pathways through two specific intracellular glucocorticoid receptors (GRs), named GRα and GRÎČ. The aim of our study was to evaluate the histologic evidence of inflammatory injury and the GRα uptake of resident and inflammatory cells in different experimental models of acute lung injury (ALI). Methods: We studied four groups of rats: three different experimental rat models of lung injury and a control group. The ALI was caused by barotrauma (due to an overventilation), oleic acid injection and mechanical ventilation. Results were compared to nonventilated rat control group. The duration of mechanical ventilation was of 2.5 h. At the end of each experiment, rats were sacrificed. Lung biopsies were evaluated for morphologic changes. The immunohistochemistry was performed to study GRα expression. Results: Histologic evidence of lung injury (alveolar and interstitial edema, vascular congestion, alveolar haemorrhage, emphysema, number of interstitial cells and neutrophils, and destruction of alveolar attachments) were present in all ventilated groups. Barotrauma lead to an additional inflammatory response. GRα expression significantly increased in the three ventilated groups compared with nonventilated groups. GRα expression was highest in barotrauma group. Conclusions: These data indicate that ALI is associated with diffuse alveolar damage, up-regulation of the inflammatory response and GRα overexpression. Barotrauma is the most effective mechanism inducing acute lung inflammation and GRα overexpression. © 2007 Elsevier Ltd. All rights reserved

    Human dyskerin binds to cytoplasmic H/ACA-box-containing transcripts affecting nuclear hormone receptor dependence

    Get PDF
    Background Dyskerin is a nuclear protein involved in H/ACA box snoRNA-guided uridine modification of RNA. In humans, its defective function is associated with cancer development and induces specific post-transcriptional alterations of gene expression. In this study, we seek to unbiasedly identify mRNAs regulated by dyskerin in human breast cancer-derived cells. Results We find that dyskerin depletion affects the expression and the association with polysomes of selected mRNA isoforms characterized by the retention of H/ACA box snoRNA-containing introns. These snoRNA retaining transcripts (snoRTs) are bound by dyskerin in the cytoplasm in the form of shorter 3 ' snoRT fragments. We then characterize the whole cytoplasmic dyskerin RNA interactome and find both H/ACA box snoRTs and protein-coding transcripts which may be targeted by the snoRTs' guide properties. Since a fraction of these protein-coding transcripts is involved in the nuclear hormone receptor binding, we test to see if this specific activity is affected by dyskerin. Obtained results indicate that dyskerin dysregulation may alter the dependence on nuclear hormone receptor ligands in breast cancer cells. These results are paralleled by consistent observations on the outcome of primary breast cancer patients stratified according to their tumor hormonal status. Accordingly, experiments in nude mice show that the reduction of dyskerin levels in estrogen-dependent cells favors xenograft development in the absence of estrogen supplementation. Conclusions Our work suggests a cytoplasmic function for dyskerin which could affect mRNA post-transcriptional networks relevant for nuclear hormone receptor functions
    • 

    corecore