6 research outputs found

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins

    No full text
    Sulfur(VI) fluoride exchange click chemistry is a formidable tool to rapidly and effectively link chemical structures. Despite advances in the field in recent years, the installation of the sulfonyl fluoride handle still requires the use of purpose-designed, expensive and non-atom-economic reagents. The use of the SO2F2 for sulfonyl fluoride synthesis has been thwarted by the difficulties associated with the manipulation and dosage of this toxic gas, and by its apparent low reactivity with amino functionalities. Here we report a modular flow platform that can generate on demand, and efficiently dose, gaseous SO2F2. The use of flow technologies allows many lingering limitations of this transformation to be overcome, resulting in reduced reaction times, efficient reactivity and broad substrate scope. The effectiveness of the process was demonstrated by the successful synthesis of a diverse set of fluorosulfates and sulfamoyl fluorides, including those derived from biorelevant compounds, peptides and proteins
    corecore