1,694 research outputs found

    Ultracold atomic quantum gases far from equilibrium

    Full text link
    We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.Comment: 4 pages, Proc. Int. Conf. Strong and Electroweak Matter, SEWM 2006; Nucl. Phys. A, to be publishe

    2PI effective action for gauge theories: Renormalization

    Get PDF
    We discuss the application of two-particle-irreducible (2PI) functional techniques to gauge theories, focusing on the issue of non-perturbative renormalization. In particular, we show how to renormalize the photon and fermion propagators of QED obtained from a systematic loop expansion of the 2PI effective action. At any finite order, this implies introducing new counterterms as compared to the usual ones in perturbation theory. We show that these new counterterms are consistent with the 2PI Ward identities and are systematically of higher order than the approximation order, which guarantees the convergence of the approximation scheme. Our analysis can be applied to any theory with linearly realized gauge symmetry. This is for instance the case of QCD quantized in the background field gauge.Comment: 21 pages, 8 figures. Uses JHEP3.cl

    Critical phenomena from the two-particle irreducible 1/N expansion

    Full text link
    The 1/N expansion of the two-particle irreducible (2PI) effective action is employed to compute universal properties at the second-order phase transition of an O(N)-symmetric N-vector model directly in three dimensions. At next-to-leading order the approach cures the spurious small-N divergence of the standard (1PI) 1/N expansion for a computation of the critical anomalous dimension eta(N), and leads to improved estimates already for moderate values of N.Comment: 18 pages, 3 figure

    2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills

    Full text link
    We employ nPI effective action techniques to study N = 4 super Yang-Mills, and write down the 2PI effective action of the theory. We also supply the evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme clarified, references adde

    Results from the 4PI Effective Action in 2- and 3-dimensions

    Full text link
    We consider a symmetric scalar theory with quartic coupling and solve the equations of motion from the 4PI effective action in 2- and 3-dimensions using an iterative numerical lattice method. For coupling less than 10 (in dimensionless units) good convergence is obtained in less than 10 iterations. We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and demonstrate the convergence of the results with increasing lattice size. The self-consistent solutions for the 2-point and 4-point functions agree well with the perturbative ones when the coupling is small and deviate when the coupling is large.Comment: 14 pages, 11 figures; v5: added numerical calculations in 3D; version accepted for publication in EPJ

    Simulating nonequilibrium quantum fields with stochastic quantization techniques

    Full text link
    We present lattice simulations of nonequilibrium quantum fields in Minkowskian space-time. Starting from a non-thermal initial state, the real-time quantum ensemble in 3+1 dimensions is constructed by a stochastic process in an additional (5th) ``Langevin-time''. For the example of a self-interacting scalar field we show how to resolve apparent unstable Langevin dynamics, and compare our quantum results with those obtained in classical field theory. Such a direct simulation method is crucial for our understanding of collision experiments of heavy nuclei or other nonequilibrium phenomena in strongly coupled quantum many-body systems.Comment: 4 pages, 4 figures, PRL version, minor change

    Transport coefficients from the 2PI effective action

    Full text link
    We show that the lowest nontrivial truncation of the two-particle irreducible (2PI) effective action correctly determines transport coefficients in a weak coupling or 1/N expansion at leading (logarithmic) order in several relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions in the loop expansion, the O(N) model in the 2PI-1/N expansion, and QED with a single and many fermion fields. Therefore, these truncations will provide a correct description, to leading (logarithmic) order, of the long time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.Comment: 5 pages, explanation in introduction expanded, summary added; to appear in PR
    • …
    corecore