1,706 research outputs found
Ultracold atomic quantum gases far from equilibrium
We calculate the time evolution of a far-from-equilibrium initial state of a
non-relativistic ultracold Bose gas in one spatial dimension. The
non-perturbative approximation scheme is based on a systematic expansion of the
two-particle irreducible effective action in powers of the inverse number of
field components. This yields dynamic equations which contain direct
scattering, memory and off-shell effects that are not captured in mean-field
theory.Comment: 4 pages, Proc. Int. Conf. Strong and Electroweak Matter, SEWM 2006;
Nucl. Phys. A, to be publishe
2PI effective action for gauge theories: Renormalization
We discuss the application of two-particle-irreducible (2PI) functional
techniques to gauge theories, focusing on the issue of non-perturbative
renormalization. In particular, we show how to renormalize the photon and
fermion propagators of QED obtained from a systematic loop expansion of the 2PI
effective action. At any finite order, this implies introducing new
counterterms as compared to the usual ones in perturbation theory. We show that
these new counterterms are consistent with the 2PI Ward identities and are
systematically of higher order than the approximation order, which guarantees
the convergence of the approximation scheme. Our analysis can be applied to any
theory with linearly realized gauge symmetry. This is for instance the case of
QCD quantized in the background field gauge.Comment: 21 pages, 8 figures. Uses JHEP3.cl
Critical phenomena from the two-particle irreducible 1/N expansion
The 1/N expansion of the two-particle irreducible (2PI) effective action is
employed to compute universal properties at the second-order phase transition
of an O(N)-symmetric N-vector model directly in three dimensions. At
next-to-leading order the approach cures the spurious small-N divergence of the
standard (1PI) 1/N expansion for a computation of the critical anomalous
dimension eta(N), and leads to improved estimates already for moderate values
of N.Comment: 18 pages, 3 figure
2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills
We employ nPI effective action techniques to study N = 4 super Yang-Mills,
and write down the 2PI effective action of the theory. We also supply the
evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme
clarified, references adde
Results from the 4PI Effective Action in 2- and 3-dimensions
We consider a symmetric scalar theory with quartic coupling and solve the
equations of motion from the 4PI effective action in 2- and 3-dimensions using
an iterative numerical lattice method. For coupling less than 10 (in
dimensionless units) good convergence is obtained in less than 10 iterations.
We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and
demonstrate the convergence of the results with increasing lattice size. The
self-consistent solutions for the 2-point and 4-point functions agree well with
the perturbative ones when the coupling is small and deviate when the coupling
is large.Comment: 14 pages, 11 figures; v5: added numerical calculations in 3D; version
accepted for publication in EPJ
Simulating nonequilibrium quantum fields with stochastic quantization techniques
We present lattice simulations of nonequilibrium quantum fields in
Minkowskian space-time. Starting from a non-thermal initial state, the
real-time quantum ensemble in 3+1 dimensions is constructed by a stochastic
process in an additional (5th) ``Langevin-time''. For the example of a
self-interacting scalar field we show how to resolve apparent unstable Langevin
dynamics, and compare our quantum results with those obtained in classical
field theory. Such a direct simulation method is crucial for our understanding
of collision experiments of heavy nuclei or other nonequilibrium phenomena in
strongly coupled quantum many-body systems.Comment: 4 pages, 4 figures, PRL version, minor change
Transport coefficients from the 2PI effective action
We show that the lowest nontrivial truncation of the two-particle irreducible
(2PI) effective action correctly determines transport coefficients in a weak
coupling or 1/N expansion at leading (logarithmic) order in several
relativistic field theories. In particular, we consider a single real scalar
field with cubic and quartic interactions in the loop expansion, the O(N) model
in the 2PI-1/N expansion, and QED with a single and many fermion fields.
Therefore, these truncations will provide a correct description, to leading
(logarithmic) order, of the long time behavior of these systems, i.e. the
approach to equilibrium. This supports the promising results obtained for the
dynamics of quantum fields out of equilibrium using 2PI effective action
techniques.Comment: 5 pages, explanation in introduction expanded, summary added; to
appear in PR
- …