2,101 research outputs found

    Pseudoscalar Meson Mixing in Effective Field Theory

    Get PDF
    We show that for any effective field theory of colorless meson fields, the mixing schemes of particle states and decay constants are not only related but also determined exclusively by the kinetic and mass Lagrangian densities. In the general case, these are bilinear in terms of the intrinsic fields and involve non-diagonal kinetic and mass matrices. By applying three consecutive steps this Lagrangian can be reduced into the standard quadratic form in terms of the physical fields. These steps are : (i) the diagonalization of the kinetic matrix, (ii) rescaling of the fields, and (iii) the diagonalization of the mass matrix. In case, where the dimensions of the non-diagonal kinetic and mass sub-matrices are respectively, k×kk\times k and n×nn\times n, this procedure leads to mixing schemes which involve [k(k−1)/2]+[n(n−1)/2][k(k-1)/2] + [n(n-1)/2] angles and kk field rescaling parameters. This observation holds true irrespective with the type of particle interactions presumed. The commonly used mixing schemes, correspond to a proper choice of the kinetic and mass matrices, and are derived as special cases. In particular, η\eta-ηâ€Č\eta ' mixing, requires one angle, if and only if, the kinetic term with the intrinsic fields has a quadratic form.Comment: REVTeX, 6 page

    New results in rho^0 meson physics

    Full text link
    We compare the predictions of a range of existing models based on the Vector Meson Dominance hypothesis with data on e^+ e^- -> pi^+ pi^$ and e^+ e^- -> mu^+ mu^- cross-sections and the phase and near-threshold behavior of the timelike pion form factor, with the aim of determining which (if any) of these models is capable of providing an accurate representation of the full range of experimental data. We find that, of the models considered, only that proposed by Bando et al. is able to consistently account for all information, provided one allows its parameter "a" to vary from the usual value of 2 to 2.4. Our fit with this model gives a point-like coupling (gamma pi^+ \pi^-) of magnitude ~ -e/6, while the common formulation of VMD excludes such a term. The resulting values for the rho mass and pi^+ pi^- and e^+e^- partial widths as well as the branching ratio for the decay omega -> pi^+ pi^- obtained within the context of this model are consistent with previous results.Comment: 34 pages with 7 figures. Published version also available at http://link.springer.de/link/service/journals/10052/tocs/t8002002.ht

    The Dipion Mass Spectrum In e+e- Annihilation and tau Decay: A Dynamical (rho0, omega, phi) Mixing Approach

    Full text link
    We readdress the problem of finding a simultaneous description of the pion form factor data in e+e- annihilations and in tau decays. For this purpose, we work in the framework of the Hidden Local Symmetry (HLS) Lagrangian and modify the vector meson mass term by including the pion and kaon loop contributions. This leads us to define the physical rho, omega and phi fields as linear combinations of their ideal partners, with coefficients being meromorphic functions of s, the square of the 4--momentum flowing into the vector meson lines. This allows us to define a dynamical, i.e. s-dependent, vector meson mixing scheme. The model is overconstrained by extending the framework in order to include the description of all meson radiative (V P gamma and P gamma gamma couplings) and leptonic (Ve+e- couplings) decays and also the isospin breaking (omega/ phi --> pi+ pi-) decay modes. The model provides a simultaneous, consistent and good description of the e+e- and tau dipion spectra. The expression for pion form factor in the latter case is derived from those in the former case by switching off the isospin breaking effects specific to e+e- and switching on those for tau decays. Besides, the model also provides a good account of all decay modes of the form V P gamma, Pgamma gamma as well as the isospin breaking decay modes. It leads us to propose new reference values for the rho^0 --> e+ e- and omega --> pi+ pi- partial widths which are part of our description of the pion form factor. Other topics (phi --> K anti K, the rho meson mass and width parameters) are briefly discussed. Therefore, we confirm the 3.3 sigma discrepancy between the theoretical estimate of a_mu based on e+e- and its direct BNL measurement.Comment: 71 pages, 8 figures. Accepted by EPJ C. Version 3: correct minor typos, minor changes spread out into the text. Extension of Sections 12.2 and 12.3.5 and introduction of the new Appendix

    Rich Reconstruction and particle identification using ring fit methods: Standalone PID in the Rich2 detector

    Get PDF
    We have extended the ring fit algorithm presented in earlier works, in order to transform it into a fully standalone PID algorithm running over the full RICH2 momentum range. For this purpose, the full information provided by the tracking (track direction and momentum as well as their errors) is accounted for in the minimized chi squared function along with the photon information. Additionally, all available information concerning the Cerenkov light emission effect is accounted for in the PID algorithm. PID efficiencies and misidentification rates are found similar to the global ID results, while the statistical information is still much more reliable

    Final-sate radiation in electron-positron annihilation into a pion pair

    Full text link
    The process of e+e−e^+e^- annihilation into a π+π−\pi^+\pi^- pair with radiation of a photon is considered. The amplitude of the reaction e+e−→π+Ï€âˆ’Îłe^+e^-\to\pi^+\pi^-\gamma consists of the model independent initial-state radiation (ISR) and model-dependent final-state radiation (FSR). The general structure of the FSR tensor is constructed from Lorentz covariance, gauge invariance and discrete symmetries in terms of the three invariant functions. To calculate these functions we apply Chiral Perturbation Theory (ChPT) with vector and axial-vector mesons. The contribution of e+e−→π+Ï€âˆ’Îłe^+e^-\to\pi^+\pi^-\gamma process to the muon anomalous magnetic moment is evaluated, and results are compared with the dominant contribution in the framework of a hybrid model, consisting of VMD and point-like scalar eletrodynamics. The developed approach allows us also to calculate the π+π−\pi^+\pi^- charge asymmetry.Comment: 21 pages, 8 figure

    Spectroscopy at B-factories Using Hard Photon Emission

    Get PDF
    The process of hard photon emission by initial electrons (positrons) at B-factories is discussed. It is shown that studies of the bottomonium spectroscopy will be feasible for the planned integrated luminosity of the B-factory experiments.Comment: 9 pages, Latex, 1 fugure, Submitted to Int.Jour.Mod.Phys.

    Vector meson dominance and the rho meson

    Full text link
    We discuss the properties of vector mesons, in particular the rho^0, in the context of the Hidden Local Symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. Firstly, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the rho mass and width, in contrast to the real axis prescription currently used in the Particle Data Group tables.Comment: 18 pages, REVTE

    Tri-meson-mixing of π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in the light-cone quark model

    Full text link
    The radiative transition form factors of the pseudoscalar mesons {π\pi, η\eta, ηâ€Č\eta'} and the vector mesons {ρ\rho, ω\omega, ϕ\phi} are restudied with π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in tri-meson-mixing pattern, which is described by tri-mixing matrices in the light-cone constituent quark model. The experimental transition decay widths are better reproduced with tri-meson-mixing than previous results in a two-mixing-angle scenario of only two-meson η\eta-ηâ€Č\eta' mixing and ω\omega-ϕ\phi mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ

    Radiative Decays, Nonet Symmetry and SU(3) Breaking

    Get PDF
    We re-examine the problem of simultaneously describing in a consistent way all radiative and leptonic decays of light mesons (V -> P gamma, P -> V gamma, P -> gamma gamma, V -> e^+ e^-). For this purpose, we rely on the Hidden Local Symmetry model in both its anomalous and non--anomalous sectors. We show that the SU(3) symmetry breaking scheme proposed by Bando, Kugo and Yamawaki, supplemented with nonet symmetry breaking in the pseudoscalar sector, allows one to reach a nice agreement with all data, except for the K^{*+/-} radiative decay. An extension of this breaking pattern allows one to account for this particular decay mode too. Considered together, the whole set of radiative decays provides a pseudoscalar mixing angle theta_P ~ -11^o and a value for theta_V which is ~ 3^o from that of ideal mixing. We also show that it is impossible, in a practical sense, to disentangle the effects of nonet symmetry breaking and those of glue inside the eta', using only light meson decays.Comment: 36 pages. Published versio

    R-values in Low Energy e^+e^- Annihilation

    Get PDF
    This presentation briefly summarizes the recent measurements of R-values in low energy e^+e^- annihilation. The new experiments aimed at reducing the uncertainties in R-values and performed with the upgraded Beijing Spectrometer (BESII) at Beijing Electron Positron Collider (BEPC) in Beijing and with CMD-2 and SND at VEEP-2M in Novosibirsk are reviewed and discussed.Comment: 17 pages, 10 figures, invited presentation at the XIX International Symposium on Lepton and Photon Interactions at High Energy, Stanford University, August 199
    • 

    corecore