59 research outputs found

    Compromised neuroplasticity in cigarette smokers under nicotine withdrawal is restituted by the nicotinic α4β2-receptor partial agonist varenicline

    Get PDF
    Nicotine modulates neuroplasticity and improves cognitive functions in animals and humans. In the brain of smoking individuals, calcium-dependent plasticity induced by non-invasive brain stimulation methods such as transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) is impaired by nicotine withdrawal, but partially re-established after nicotine re-administration. In order to investigate the underlying mechanism further, we tested the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity in smokers during nicotine withdrawal, induced by PAS and tDCS, respectively. We administered low (0.3 mg) and high (1.0 mg) single doses of varenicline or placebo medication before stimulation over the left motor cortex of 20 healthy smokers under nicotine withdrawal. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes for 36 hours after plasticity induction. Stimulation-induced plasticity was absent under placebo medication, whereas it was present in all conditions under high dose. Low dose restituted only tDCS-induced non-focal plasticity, producing no significant impact on focal plasticity. High dose varenicline also prolonged inhibitory plasticity. These results are comparable to the impact of nicotine on withdrawal-related impaired plasticity in smokers and suggest that α4β2 nicotinic receptors are relevantly involved in plasticity deficits and restitution in smokers

    Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses

    Get PDF
    Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance

    Relaxing learned constraints through cathodal tDCS on the left dorsolateral prefrontal cortex

    Get PDF
    We solve problems by applying previously learned rules. The dorsolateral prefrontal cortex (DLPFC) plays a pivotal role in automating this process of rule induction. Despite its usual efficiency, this process fails when we encounter new problems in which past experience leads to a mental rut. Learned rules could therefore act as constraints which need to be removed in order to change the problem representation for producing the solution. We investigated the possibility of suppressing the DLPFC by transcranial direct current stimulation (tDCS) to facilitate such representational change. Participants solved matchstick arithmetic problems before and after receiving cathodal, anodal or sham tDCS to the left DLPFC. Participants who received cathodal tDCS were more likely to solve the problems that require the maximal relaxation of previously learned constraints than the participants who received anodal or sham tDCS. We conclude that cathodal tDCS over the left DLPFC might facilitate the relaxation of learned constraints, leading to a successful representational change

    Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants

    Get PDF

    Hemispheric differences between left and right supramarginal gyrus for pitch and rhythm memory

    Get PDF
    Functional brain imaging studies and non-invasive brain stimulation methods have shown the importance of the left supramarginal gyrus (SMG) for pitch memory. The extent to which this brain region plays a crucial role in memory for other auditory material remains unclear. Here, we sought to investigate the role of the left and right SMG in pitch and rhythm memory in non-musicians. Anodal or sham transcranial direct current stimulation (tDCS) was applied over the left SMG (Experiment 1) and right SMG (Experiment 2) in two different sessions. In each session participants completed a pitch and rhythm recognition memory task immediately after tDCS. A significant facilitation of pitch memory was revealed when anodal stimulation was applied over the left SMG. No significant effects on pitch memory were found for anodal tDCS over the right SMG or sham condition. For rhythm memory the opposite pattern was found; anodal tDCS over the right SMG led to an improvement in performance, but anodal tDCS over the left SMG had no significant effect. These results highlight a different hemispheric involvement of the SMG in auditory memory processing depending on auditory material that is encoded

    Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: a systematic evaluation

    No full text
    Single-Pulse Motor-Evoked Potentials (MEPS) and Cerebellar-Brain Inhibition (CBI) amplitudes, acquired pre- and post-cerebellar tDCS

    The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias.

    No full text
    The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research

    ‘Brain doping’ may improve athletes’ performance

    No full text
    • …
    corecore