6,944 research outputs found

    Probing the interplay between surface and bulk states in the topological Kondo insulator SmB6_6 through conductance fluctuation spectroscopy

    Get PDF
    We present results of resistance fluctuation spectroscopy on single crystals of the predicted Kondo topological insulator material SmB6_6. Our measurements show that at low temperatures, transport in this system takes place only through surface states. The measured noise in this temperature range arises due to Universal Conductance Fluctuations whose statistics was found to be consistent with theoretical predictions for that of two-dimensional systems in the Symplectic symmetry class. At higher temperatures, we find signatures of glassy dynamics and establish that the measured noise is caused by mobility fluctuations in the bulk. We find that, unlike the topological insulators of the dichalcogenide family, the noise in surface and bulk conduction channels in SmB6_6 are completely uncorrelated. Our measurements establish that at sufficiently low temperatures, the bulk has no discernible contribution to electrical transport in SmB6_6 making it an ideal platform for probing the physics of topological surface states.Comment: 9 pages, 11 figure

    Magnetic properties of geometrically frustrated SrGd2O4

    Full text link
    A study of the magnetic properties of the frustrated rare earth oxide SrGd2O4 has been completed using bulk property measurements of magnetization, susceptibility and specific heat on single crystal samples. Two zero-field phase transitions have been identified at 2.73 and 0.48 K. For the field, H, applied along the a and b axes, a single boundary is identified that delineates the transition from a low field, low temperature magnetically ordered regime to a high field, high temperature paramagnetic phase. Several field-induced transitions, however, have been observed with H || c. The measurements have been used to map out the magnetic phase diagram of SrGd2O4, suggesting that it is a complex system with several competing magnetic interactions. The low-temperature magnetic behavior of SrGd2O4 is very different compared to the other SrLn2O4 (Ln = Lanthanide) compounds, even though all of the SrLn2O4 compounds are isostructural, with the magnetic ions forming a low-dimensional lattice of zigzag chains that run along the c axis. The differences are likely to be due to the fact that in the ground state Gd3+ has zero orbital angular momentum and therefore the spin-orbit interactions, which are crucial for other SrLn2O4 compounds, can largely be neglected. Instead, given the relatively short Gd3+-Gd3+ distances in SrGd2O4, dipolar interactions must be taken into account for this antiferromagnet alongside the Heisenberg exchange terms.Comment: 10 pages, 9 figure

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200

    On The Center Sets and Center Numbers of Some Graph Classes

    Full text link
    For a set SS of vertices and the vertex vv in a connected graph GG, maxxSd(x,v)\displaystyle\max_{x \in S}d(x,v) is called the SS-eccentricity of vv in GG. The set of vertices with minimum SS-eccentricity is called the SS-center of GG. Any set AA of vertices of GG such that AA is an SS-center for some set SS of vertices of GG is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,nK_{m,n}, KneK_n-e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes

    Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2

    Full text link
    Ultrasonic velocity measurements on the magnetoelectric multiferroic compound CuFeO2 reveal that the antiferromagnetic transition observed at TN1 = 14 K might be induced by an R-3m -> C2/m pseudoproper ferroelastic transition (G. Quirion, M. J. Tagore, M. L. Plumer, O. A. Petrenko, Phys. Rev. B 77, 094111 (2008)). In that case, the group theory states that the order parameter associated with the structural transition must belong to a two dimensional irreducible representation Eg (x^2 - y^2, xy). Since this type of transition can be driven by a Raman Eg mode, we performed Raman scattering measurements on CuFeO2 between 5 K and 290 K. Considering that the isostructural multiferroic compound CuCrO2 might show similar structural deformations at the antiferromagnetic transition TN1 = 24.3 K, Raman measurements have also been performed for comparison. At ambient temperature, the Raman modes in CuFeO2 are observed at omega_Eg = 352 cm^-1 and omega_Ag = 692 cm^-1, while these modes are detected at omega_E_g = 457 cm^-1 and omega_Ag = 709 cm^-1 in CuCrO2. The analysis of the temperature dependence of modes shows that the frequency of all modes increases down to 5 K. This typical behavior can be attributed to anharmonic phonon-phonon interactions. These results clearly indicate that none of the Raman active modes observed in CuFeO2 and CuCrO2 drive the pseudoproper ferroelastic transition observed at the N\'eel temperature TN1. Finally, a broad band at about 550 cm^-1 observed in the magnetoelectric phase of CuCrO2 below TN2 could be attributed to a magnon mode.Comment: 11 pages, 5 figure

    The Kolar Schist Belt: A possible Archaean suture zone

    Get PDF
    The Kolar Schist Belt represents a N-S trending discontinuity in the structures, lithologies, and emplacement and metamorphic ages of late Archean gneisses. The suggestion of a much older basement on the west side of the belt is not seen on the east. Within the schist belt amphibolites from each side have distinctly different chemical characteristics, suggesting different sources at similar mantle depths. These amphibolites were probably not part of a single volcanic sequence, but may have formed about the same time in two completely different settings. Could the amphibolites with depleted light REE patterns represent Archean ocean floor volcanics which are derived from a mantle source with a long term depletion of the light REE? Why are the amphibolites giving an age which may be older than the exposed gneisses immediately on either side of the belt? These results suggest that it is necessary to seriously consider whether the Kolar Schist Belt may be a suture between two late Archean continental terranes

    Paramagnetic magnetization signals and curious metastable behaviour in field-cooled magnetization of a single crystal of superconductor 2H-NbSe2

    Get PDF
    We present here some newer characteristics pertaining to paramagnetic Meissner effect like response in a single crystal of the low Tc superconducting compound 2H-NbSe2 via a detailed study of effects of perturbation on the field-cooled magnetization response. In the temperature range, where an anomalous paramagnetic magnetization occurs, the field-cooled magnetization response is found to be highly metastable: it displays a curious tendency to switch randomly from a given paramagnetic value to a diamagnetic or to a different paramagnetic value, when the system is perturbed by an impulse of an externally applied ac field. The new facets revealed in a single crystal of 2H-NbSe2 surprisingly bear a marked resemblance with the characteristics of magnetization behaviour anticipated for the giant vortex states with multiple flux quanta predicted to occur in mesoscopic-sized superconducting specimen and possible transitions amongst such states.Comment: 12 pages, 9 figures, submitted to Journal of Physics: Condensed Matte

    Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K

    Get PDF
    Rate coefficients for rotational transitions in H_2 induced by H_2 impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H_2)_2 potential energy surface were performed. The potential energy surface used here is presumed to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels J <= 8 were computed for collision energies ranging between 0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 < T <10,000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good though discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para- and ortho-H_2 collisions are obtained from the collisional rate coefficients. Implications of the new results for non-thermal H_2 rotational distributions in molecular regions are also investigated
    corecore