29,016 research outputs found

    What is the temperature in heavy ion collisions?

    Full text link
    We consider the Tsallis distribution as the source of the apparent slope of one-particle spectra in heavy-ion collisions and investigate the equation of state of this special quark matter in the framework of non-extensive thermodynamics.Comment: Talk given by T.S.Biro at RHIC School 2003, Dec.8-11, 2003, Budapest, Hungar

    Jet Modification in a Brick of QGP Matter

    Full text link
    We have implemented the LPM effect into a microscopic transport model with partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that modifies the emission of radiation in the presence of a dense medium. In QCD this results in a quadratic length dependence for radiative energy loss. This is an important effect for the modification of jets by their passage through the QGP. We verify the leading parton energy loss in the model against the leading order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result. We apply our model to the recent observations of the modification of di-jets at the LHC.Comment: Presented at Panic 1

    Fruticultura tropical: a gravioleira (Annona muricata L).

    Get PDF
    bitstream/item/58400/1/DOCUMENTOS-47-CPATU.pd

    Jet quenching and broadening: the transport coefficient q^\hat{q} in an anisotropic plasma

    Full text link
    The jet quenching parameter q^\hat{q} is analyzed for a quark jet propagating in an anisotropic plasma. The momentum anisotropy is calculated at high temperature of the underlying quark-gluon plasma. q^\hat{q} is explicitly estimated in leading-logarithmic approximation by the broadening of the massless quark interacting via gluon exchange. A plasma instability is present. Strong indications are found that q^\hat{q} is increasing with increasing anisotropy. Possible implications for the saturation scale QsQ_s in AAA-A collisions are pointed out.Comment: 1

    Jet quenching with running coupling including radiative and collisional energy losses

    Full text link
    We calculate the nuclear modification factor for RHIC and LHC conditions accounting for the radiative and collisional parton energy loss with the running coupling constant.We find that the RHIC data can be explained both in the scenario with the chemically equilibrium quark-gluon plasma and purely gluonic plasma with slightly different thermal suppression of the coupling constant. The role of the parton energy gain due to gluon absorption is also investigated. Our results show that the energy gain gives negligible effect.Comment: 11 pages, 3 figure

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
    corecore