159 research outputs found

    Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Get PDF
    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral—Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11–36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling

    Annual coral bleaching and the long-term recovery capacity of coral

    Get PDF
    Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species

    A study of genetic polymorphisms of milk β-lactoglobulin, α S1 -casein, β-casein, and κ-casein in five dairy breeds

    Full text link
    Gene frequencies of the milk β-lactoglobulin, α S1 -casein, β-casein, and κ-casein loci have been estimated from 1663 cows of five dairy breeds. Departure from Hardy-Weinberg equilibrium was found only in the κ-casein system in Jerseys. However, chance alone could have accounted for this single significant finding. Results of pairwise comparisons among the five breeds of allele frequencies at these milk protein loci indicate that of the 40 possible tests, only six comparisons are not significant at the 5% probability level. It would appear that these breeds are characterizable in terms of the gene frequencies of these milk protein loci. Nonindependent assortment of genotypes among these milk protein loci was also studied. The closely linked casein loci were not independent in almost all the breeds where tests could be carried out. The only exception was between the α S1 -casein and κ-casein loci in Holsteins. β-Lactoglobulin was independent of the casein loci in all breeds except Brown Swiss, where it was found to be significantly associated with κ-casein. Close linkage is proposed as an important factor for maintaining the observed milk protein polymorphisms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44176/1/10528_2004_Article_BF00485960.pd

    Künstliche Gehörtäuschungen bei Delirium tremens

    No full text

    Experimentelle Studien über Associationen.

    No full text
    Mode of access: Internet
    corecore