2 research outputs found

    Vasopressin modulates lateral septal network activity via two distinct electrophysiological mechanisms

    No full text
    The lateral septal area is rich in vasopressin V(1A) receptors and is densely innervated by vasopressinergic axons, originating mainly from the bed nucleus of the stria terminalis and the amygdala. Genetic and behavioral studies provide evidence that activation of vasopressin receptors in this area plays a determinant role in promoting social recognition. What could be the neuronal mechanism underlying this effect? Using rat brain slices and whole-cell recordings, we found that lateral septal neurons are under the influence of a basal GABAergic inhibitory input. Vasopressin, acting via V(1A) but not V(1B) receptors, greatly enhanced this input in nearly all neurons. The peptide had no effect on miniature inhibitory postsynaptic currents, indicating that it acted on receptors located in the somatodendritic membrane, rather than on axon terminals, of GABAergic interneurons. Cell-attached recordings showed that vasopressin can cause a direct excitation of a subpopulation of lateral septal neurons by acting via V(1A) but not V(1B) receptors. The presence in the lateral septum of V(1A) but not of V(1B) receptors was confirmed by competition binding studies using light microscopic autoradiography. In conclusion, vasopressin appears to act in the lateral septum in a dual mode: (i) by causing a direct excitation of a subpopulation of neurons, and (ii) by causing an indirect inhibition of virtually all lateral septal neurons. This modulation by vasopressin of the lateral septal circuitry may be part of the neuronal mechanism by which the peptide, acting via V(1A) receptors, promotes social recognition

    A circuit from hippocampal CA2 to lateral septum disinhibits social aggression

    No full text
    Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.We thank N. Renier, the Rockefeller imaging center and the laboratories of F. Polleux and T. Jessell for their help in creating Supplementary Video 1. We also thank R. Bruno, L. Herbaut and the members of the Siegelbaum laboratory for discussions. This work was supported by the R01 MH104602 and R01 MH106629 from NIH (S.A.S.), PD/BD/113700/2015 from the Portuguese Foundation for Science and Technology (T.M.), 5TL1TR001875-03 from NIH (E.W.B.) and the HHMI (E.R.K).info:eu-repo/semantics/publishedVersio
    corecore