3 research outputs found

    Current Advances in Detection and Treatment of Babesiosis

    Get PDF
    Babesiosis is a disease with a world-wide distribution affecting many species of mammals principally cattle and man. The major impact occurs in the cattle industry where bovine babesiosis has had a huge economic effect due to loss of meat and beef production of infected animals and death. Nowadays to those costs there must be added the high cost of tick control, disease detection, prevention and treatment. In almost a century and a quarter since the first report of the disease, the truth is: there is no a safe and efficient vaccine available, there are limited chemotherapeutic choices and few low-cost, reliable and fast detection methods. Detection and treatment of babesiosis are important tools to control babesiosis. Microscopy detection methods are still the cheapest and fastest methods used to identify Babesia parasites although their sensitivity and specificity are limited. Newer immunological methods are being developed and they offer faster, more sensitive and more specific options to conventional methods, although the direct immunological diagnoses of parasite antigens in host tissues are still missing. Detection methods based on nucleic acid identification and their amplification are the most sensitive and reliable techniques available today; importantly, most of those methodologies were developed before the genomics and bioinformatics era, which leaves ample room for optimization. For years, babesiosis treatment has been based on the use of very few drugs like imidocarb or diminazene aceturate. Recently, several pharmacological compounds were developed and evaluated, offering new options to control the disease. With the complete sequence of the Babesia bovis genome and the B. bigemina genome project in progress, the post-genomic era brings a new light on the development of diagnosis methods and new chemotherapy targets. In this review, we will present the current advances in detection and treatment of babesiosis in cattle and other animals, with additional reference to several apicomplexan parasites

    Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus

    Get PDF
    Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populations for cypermethrin, flumethrin and deltamethrin. Esterase activity did not have a significant correlation with SP´s resistance. However a significant correlation (p < 0.01) was found between the presence of the sodium channel mutation, and resistance to SP´s as measured by PASA and LPT respectively. Just over half the populations (16/28) were cross-resistant to flumethrin, deltamethrin and cypermethrine, 21.4% of the samples (6/28) were susceptible to all of the three pyrethroids 10.7 of the samples (3/28) were resistant to flumethrin, 3.4 of the samples (1/28) were resistant to deltamethrin only and 7.1% (2/28) were resistant to flumethrin and deltamethrin. The presence of the kdr mutation correlates with resistance to the SP´s as a class. Target site insensitivity is the major mechanism of resistance to SP´s in Mexican R. microplus field strains, involving the presence of a sodium channel mutation, however, esterase-based, other mutations or combination of mechanisms can also occur
    corecore