666,141 research outputs found

    UHF flows and the flip automorphism

    Full text link
    A UHF flow is an infinite tensor product type action of the reals on a UHF algebra AA and the flip automorphism is an automorphism of AAA\otimes A sending xyx\otimes y into yxy\otimes x. If α\alpha is an inner perturbation of a UHF flow on AA, there is a sequence (un)(u_n) of unitaries in AAA\otimes A such that αtαt(un)un\alpha_t\otimes \alpha_t(u_n)-u_n converges to zero and the flip is the limit of \Ad u_n. We consider here whether the converse holds or not and solve it with an additional assumption: If AAAA\otimes A\cong A and α\alpha absorbs any UHF flow β\beta (i.e., αβ\alpha\otimes\beta is cocycle conjugate to α\alpha), then the converse holds; in this case α\alpha is what we call a universal UHF flow.Comment: 18 page

    Prediction model for the pressing process in an innovative forming joints technology for woodworking

    Get PDF
    To improve the efficiency of the joints formation, a new method of pressing in the longitudinal direction is proposed. This paper presents a predictive model for the pressing force depending on the state of the wood and the parameters of the pressed mortise. The most significant factors are the width of the mortise and the moisture content of the wood. Interestingly, the depth of the mortise formation is a less significant factor, which means that the pressing technology will allow to form a long glue line and accordingly high joint strength due to sufficient profile length. In the test range of factors, the best results in terms of energy costs are shown by a minimum mortise width of 4 mm. Further research should be devoted to the study of the formation of small width mortises (4 mm or less) and the investigation of their quality. © 2019 Published under licence by IOP Publishing Ltd

    Deconfinement Phase Transition in Neutron Stars and \delta-Meson Field

    Full text link
    The Maxwell and Glendenning construction scenarios of deconfinement phase transition in neutron star matter are investigated. The hadronic phase is described within the relativistic mean-field (RMF) theory, if also the scalar-isovector \delta-meson field is taken into account. The strange quark phase is described in the frame of MIT bag model, including the effect of perturbative one-gluon exchange interactions. The influence of the \delta-meson field on the deconfinement phase transition boundary characteristics is discussed.Comment: 4 pages, 2 figure

    Non-ergodic states induced by impurity levels in quantum spin chains

    Full text link
    The semi-infinite XY spin chain with an impurity at the boundary has been chosen as a prototype of interacting many-body systems to test for non-ergodic behavior. The model is exactly solvable in analytic way in the thermodynamic limit, where energy eigenstates and the spectrum are obtained in closed form. In addition of a continuous band, localized states may split off from the continuum, for some values of the impurity parameters. In the next step, after the preparation of an arbitrary non-equilibrium state, we observe the time evolution of the site magnetization. Relaxation properties are described by the long-time behavior, which is estimated using the stationary phase method. Absence of localized states defines an ergodic region in parameter space, where the system relaxes to a homogeneous magnetization. Out of this region, impurity levels split from the band, and localization phenomena may lead to non-ergodicity.Comment: 10 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1703.0344
    corecore