1,049 research outputs found

    Efficient calculation of the antiferromagnetic phase diagram of the 3D Hubbard model

    Full text link
    The Dynamical Cluster Approximation with Betts clusters is used to calculate the antiferromagnetic phase diagram of the 3D Hubbard model at half filling. Betts clusters are a set of periodic clusters which best reflect the properties of the lattice in the thermodynamic limit and provide an optimal finite-size scaling as a function of cluster size. Using a systematic finite-size scaling as a function of cluster space-time dimensions, we calculate the antiferromagnetic phase diagram. Our results are qualitatively consistent with the results of Staudt et al. [Eur. Phys. J. B 17 411 (2000)], but require the use of much smaller clusters: 48 compared to 1000

    Heavy-quarks in the QGP: study of medium effects through euclidean propagators and spectral functions

    Full text link
    The heavy-quark spectral function in a hot plasma is reconstructed from the corresponding euclidean propagator. The latter is evaluated through a path-integral simulation. A weak-coupling calculation is also performed, allowing to interpret the qualitative behavior of the spectral function in terms of quite general physical processes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Physics of cuprates with the two-band Hubbard model - The validity of the one-band Hubbard model

    Full text link
    We calculate the properties of the two-band Hubbard model using the Dynamical Cluster Approximation. The phase diagram resembles the generic phase diagram of the cuprates, showing a strong asymmetry with respect to electron and hole doped regimes, in agreement with experiment. Asymmetric features are also seen in one-particle spectral functions and in the charge, spin and d-wave pairing susceptibility functions. We address the possible reduction of the two-band model to a low-energy single-band one, as it was suggested by Zhang and Rice. Comparing the two-band Hubbard model properties with the single-band Hubbard model ones, we have found similar low-energy physics provided that the next-nearest-neighbor hopping term t' has a significant value (t′/t≈0.3t'/t \approx 0.3). The parameter t' is the main culprit for the electron-hole asymmetry. However, a significant value of t' cannot be provided in a strict Zhang and Rice picture where the extra holes added into the system bind to the existing Cu holes forming local singlets. We notice that by considering approximate singlet states, such as plaquette ones, reasonable values of t', which capture qualitatively the physics of the two-band model can be obtained. We conclude that a single-band t-t'-U Hubbard model captures the basic physics of the cuprates concerning superconductivity, antiferromagnetism, pseudogap and electron-hole asymmetry, but is not suitable for a quantitative analysis or to describe physical properties involving energy scales larger than about 0.5 eV.Comment: 14 pages, 16 figure

    Molecule Microscopy

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 1 ROI GM23678)Health Sciences Fun

    Thermoelectric Response Near the Density Driven Mott Transition

    Full text link
    We investigate the thermoelectric response of correlated electron systems near the density driven Mott transition using the dynamical mean field theory.Comment: 4 pages, 2 embedded figure

    Molecule Microscopy

    Get PDF
    Contains research objectives and reports on three research projects.Francis L. Friedman ChairNational Institutes of Health (Grant AM-31546

    Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions

    Full text link
    The nature of the Mott-Hubbard metal-insulator transition in the infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo simulations down to temperature T=W/140 (W=bandwidth). Calculating with significantly higher precision than in previous work, we show that the hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears. Hence the transition is found to be continuous rather than discontinuous down to at least T=0.325T_{IPT}. We also study the changes in the density of states across the transition, which illustrate that the Fermi liquid breaks down before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st

    Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures

    Full text link
    The anisotropic degenerate two-orbital Hubbard model is studied within dynamical mean-field theory at low temperatures. High-precision calculations on the basis of a refined quantum Monte Carlo (QMC) method reveal that two distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2 even in the absence of spin-flip contributions to the Hund exchange. The second transition -- not seen in earlier studies using QMC, iterative perturbation theory, and exact diagonalization -- is clearly exposed in a low-frequency analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure

    Two-dimensional Hubbard-Holstein bipolaron

    Full text link
    We present a diagrammatic Monte Carlo study of the properties of the Hubbard-Holstein bipolaron on a two-dimensional square lattice. With a small Coulomb repulsion, U, and with increasing electron-phonon interaction, and when reaching a value about two times smaller than the one corresponding to the transition of light polaron to heavy polaron, the system suffers a sharp transition from a state formed by two weakly bound light polarons to a heavy, strongly bound on-site bipolaron. Aside from this rather conventional bipolaron a new bipolaron state is found for large U at intermediate and large electron-phonon coupling, corresponding to two polarons bound on nearest-neighbor sites. We discuss both the properties of the different bipolaron states and the transition from one state to another. We present a phase diagram in parameter space defined by the electron-phonon coupling and U. Our numerical method does not use any artificial approximation and can be easily modified to other bipolaron models with longer range electron-phonon and/or electron-electron interaction.Comment: 14 pages, 12 figure

    Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems

    Full text link
    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the LISA, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard of recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V2O3V_2O_3. We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain an excellent agreement with the experimental data and present a detailed discussion on the role of magnetic frustration by studying the k−k-resolved single particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce3Bi4Pt3Ce_3Bi_4Pt_3 and FeSiFeSi. The model can successfully explain the different energy scales that are associated to the thermal filling of the optical gap, which we also relate to corresponding changes in the density of states. The temperature dependence of the optical sum rule is obtained and its relevance for the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
    • …
    corecore