2,978 research outputs found

    MB 780 Cross-Cultural Christian Discipling

    Get PDF
    Symbol and Ceremony: Making Disciples Across Cultures, M. Zahiser The Ritual Process: Structure and Anti-Structure, Victor Turner. Understanding Spiritual Power: A Forgotten Dimension of Cross-Cultural Mission and Ministry, by Marguerite G. Kraft. Windows of the Soul: Experiencing God in New Ways, Ken Gire.https://place.asburyseminary.edu/syllabi/3543/thumbnail.jp

    Dosimetric precision of an ion beam tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams.</p> <p>Methods</p> <p>A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion.</p> <p>Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system.</p> <p>Results</p> <p>All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements.</p> <p>Conclusions</p> <p>The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.</p

    4D treatment planning for scanned ion beams

    Get PDF
    At Gesellschaft fĂĽr Schwerionenforschung (GSI) more than 330 patients have been treated with scanned carbon ion beams in a pilot project. To date, only stationary tumors have been treated. In the presence of motion, scanned ion beam therapy is not yet possible because of interplay effects between scanned beam and target motion which can cause severe mis-dosage. We have started a project to treat tumors that are subject to respiratory motion. A prototype beam application system for target tracking with the scanned pencil beam has been developed and commissioned

    Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV) patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE) vs. a proton boost (10 GyE) in addition to photon radiotherapy (50 Gy), the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II), a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy.</p> <p>This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas.</p> <p>Methods</p> <p>33 patients with gliomas (n = 26) and meningiomas (n = 7) were treated with carbon ion (n = 26) and proton (n = 7) radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0.</p> <p>Results</p> <p>Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%), intermittent cranial nerve symptoms (6%) and single episodes of seizures (6%). At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient.</p> <p>Conclusions</p> <p>Particle radiotherapy is safe and feasible in patients with primary brain tumors. It is associated with little toxicity. A positive response of both gliomas and meningiomas, which is suggested in these preliminary data, must be evaluated in further clinical trials.</p

    Tumour Therapy with Particle Beams

    Get PDF
    Photons are exponentially attenuated in matter producing high doses close to the surface. Therefore they are not well suited for the treatment of deep seated tumours. Charged particles, in contrast, exhibit a sharp increase of ionisation density close to the end of their range, the so-called Bragg-peak. The depth of the Bragg-peak can be adjusted by varying the particle's energy. In parallel with the large energy deposit the increase in biological effectiveness for cell killing at the end of the range provides an ideal scalpel for the surgeon effectively without touching the surface tissue. Consequently proton therapy has gained a lot of ground for treating well localized tumours. Even superior still are heavy ions, where the ionisation pattern is increased by the square of their charge.Comment: 12 pages, Latex, 11 figure

    Cell survival probability in a spread-out Bragg peak for novel treatment planning

    Full text link
    The problem of variable cell survival probability along the spread-out Bragg peak is one of the long standing problems in planning and optimisation of ion-beam therapy. This problem is considered using the multiscale approach to the physics of ion-beam therapy. The physical reasons for this problem are analysed and understood on a quantitative level. A recipe of solution to this problem is suggested using this approach. This recipe can be used in the design of a novel treatment planning and optimisation based on fundamental science.Comment: 6 pages, 3 figures, submitted to EPJ

    Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    Full text link
    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.Comment: 14 pages, 3 figures, submitted to EPJ
    • …
    corecore