2 research outputs found

    Concept of Inverted Refractive-Index-Contrast Grating Mirror and Exemplary Fabrication by 3D Microprinting

    Full text link
    Highly reflective mirrors are indispensable components in a variety of state-of-the-art photonic devices. Typically used, bulky, multi-layered distributed Bragg (DBR) reflectors are limited to lattice-matched semiconductors or nonconductive dielectrics. Here, we introduce an inverted refractive-index-contrast grating (ICG), as compact, single layer alternative to DBR. In the ICG, a subwavelength one-dimensional grating made of a low refractive index material is implemented on a high refractive index cladding. Our numerical simulations show that the ICG provides nearly total optical power reflectance for the light incident from the side of the cladding whenever the refractive index of the grating exceeds 1.75, irrespective of the refractive index of the cladding. Additionally, the ICG enables polarization discrimination and phase tuning of the reflected and transmitted light, the property not achievable with the DBR. We experimentally demonstrate a proof-of-concept ICG fabricated according to the proposed design, using the technique of 3D microprinting in which thin stripes of IP-Dip photoresist are deposited on a Si cladding. This one-step method avoids laborious and often destructive etching-based procedures for grating structuration, making it possible to implement the grating on any arbitrary cladding material

    Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers

    Get PDF
    We present a numerical model allowing for simulations of small-signal modulation (SSM) response of vertical-cavity surface-emitting lasers (VCSELs). The model of SSM response utilizes only the data provided by a static model of continuous-wave operation for a given bias voltage. Thus the fitting of dynamic measurement parameters is not needed nor used. The validity of this model has been verified by comparing experimental SSM characteristics of a VCSEL with the results of simulations. A good agreement between experiment and simulations has been observed. Based on the results obtained in the simulations of the existing laser, the impact of the number of quantum wells in the active region on the modulation properties has been calculated and analyzed
    corecore