4 research outputs found

    CT-based thermometry with virtual monoenergetic images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning–based reconstruction

    No full text
    Objectives!#!The aim of this study was to evaluate the sensitivity of CT-based thermometry for clinical applications regarding a three-component tissue phantom of fat, muscle and bone. Virtual monoenergetic images (VMI) by dual-energy measurements and conventional polychromatic 120-kVp images with modern reconstruction algorithms adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning image reconstruction (DLIR) were compared.!##!Methods!#!A temperature-regulating water circuit system was developed for the systematic evaluation of the correlation between temperature and Hounsfield units (HU). The measurements were performed on a Revolution CT with gemstone spectral imaging technology (GSI). Complementary measurements were performed without GSI (voltage 120 kVp, current 130-545 mA). The measured object was a tissue equivalent phantom in a temperature range of 18 to 50°C. The evaluation was carried out for VMI at 40 to 140 keV and polychromatic 120-kVp images.!##!Results!#!The regression analysis showed a significant inverse linear dependency between temperature and average HU regardless of ASIR-V and DLIR. VMI show a higher temperature sensitivity compared to polychromatic images. The temperature sensitivities were 1.25 HU/°C (120 kVp) and 1.35 HU/°C (VMI at 140 keV) for fat, 0.38 HU/°C (120 kVp) and 0.47 HU/°C (VMI at 40 keV) for muscle and 1.15 HU/°C (120 kVp) and 3.58 HU/°C (VMI at 50 keV) for bone.!##!Conclusions!#!Dual-energy with VMI enables a higher temperature sensitivity for fat, muscle and bone. The reconstruction with ASIR-V and DLIR has no significant influence on CT-based thermometry, which opens up the potential of drastic dose reductions.!##!Key points!#!• Virtual monoenergetic images (VMI) enable a higher temperature sensitivity for fat (8%), muscle (24%) and bone (211%) compared to conventional polychromatic 120-kVp images. • With VMI, there are parameters, e.g. monoenergy and reconstruction kernel, to modulate the temperature sensitivity. In contrast, there are no parameters to influence the temperature sensitivity for conventional polychromatic 120-kVp images. • The application of adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning-based image reconstruction (DLIR) has no effect on CT-based thermometry, opening up the potential of drastic dose reductions in clinical applications

    MRI following scoliosis surgery? An analysis of implant heating, displacement, torque, and susceptibility artifacts

    No full text
    Objectives!#!The implant constructs used in scoliosis surgery are often long with a high screw density. Therefore, it is generally believed that magnetic resonance imaging (MRI) should not be carried out after scoliosis surgery, with the result that computed tomography is often preferred despite the ionizing radiation involved. The objective of this study was to evaluate the MRI compatibility of long pedicle-screw-rod constructs at 1.5 T and 3 T using standardized methods of the American Society for Testing and Materials (ASTM).!##!Methods!#!Constructs between 130 and 430 mm long were systematically examined according to the ASTM standards F2182 (radio frequency-induced heating), F2119 (susceptibility artifacts), F2213 (magnetically induced torque), and F2052 (magnetically induced displacement force).!##!Results!#!The maximum heating in the magnetic field was 1.3 K. Heating was significantly influenced by magnetic field strength (p < 0.001), implant length (p = 0.048), and presence of cross-links (p = 0.001). The maximum artifact width for different lengths of the anatomically bent titanium rods with CoCr alloy ranged between 14.77 ± 2.93 mm (TSE) and 17.49 ± 1.82 mm (GRE) for 1.5 T and between 23.67 ± 2.39 mm (TSE) and 27.77 ± 2.37 mm (GRE) for 3 T. TiCP and TiAl showed the smallest and CoCr and CoCr Plus the largest artifact widths. The magnetically induced torque and displacement force were negligible.!##!Conclusions!#!MRI following scoliosis surgery with long implant constructs is safe with the patient in supine position. Although susceptibility artifacts can severely limit the diagnostic value, the examination of other regions is possible.!##!Key points!#!• Large spinal implants are not necessarily a contraindication for MRI; MR conditional status can be examined according to the ASTM standards F2182, F2119, F2213, and F2052. • A metallic pedicle-screw-rod system could be reliably and safely examined in all combinations of length (130 to 430 mm), configuration, and material in a
    corecore