334 research outputs found

    Strongly-coupled anisotropic gauge theories and holography

    Get PDF
    We initiate a non-perturbative study of anisotropic, non-conformal and confining gauge theories that are holographically realized in gravity by generic Einstein-Axion-Dilaton systems. In the vacuum our solutions describe RG flows from a conformal field theory in the UV to generic scaling solutions in the IR with generic hyperscaling violation and dynamical exponents θ\theta and zz. We formulate a generalization of the holographic c-theorem to the anisotropic case. At finite temperature, we discover that the anisotropic deformation reduces the confinement-deconfinement phase transition temperature suggesting a possible alternative explanation of inverse magnetic catalysis solely based on anisotropy. We also study transport and diffusion properties in anisotropic theories and observe in particular that the butterfly velocity that characterizes both diffusion and growth of chaos transverse to the anisotropic direction, saturates a constant value in the IR which can exceed the bound given by the conformal value.Comment: 6 pages, 4 figures; v2: minor improvements, references added, version accepted for publication in PR

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde

    Universal rapidity scaling of entanglement entropy inside hadrons from conformal invariance

    Full text link
    When a hadron is probed at high energy, a non-trivial quantum entanglement entropy inside the hadron emerges due to the lack of complete information about the hadron wave function extracted from this measurement. In the high energy limit, the hadron becomes a maximally entangled state, with a linear dependence of entanglement entropy on rapidity, as has been found in a recent analysis based on parton description. In this Letter, we use an effective conformal field theoretic description of hadrons on the lightcone to show that the linear dependence of the entanglement entropy on rapidity found in parton description is a general consequence of approximate conformal invariance and does not depend on the assumption of weak coupling. Our result also provides further evidence for a duality between the parton and string descriptions of hadrons.Comment: 5 pages, 1 figur

    Holographic entanglement as nonlocal magnetism

    Full text link
    The Ryu-Takayanagi prescription can be cast in terms of a set of microscopic threads that help visualize holographic entanglement in terms of distillation of EPR pairs. While this framework has been exploited for regions with a high degree of symmetry, we take the first steps towards understanding general entangling regions, focusing on AdS4_4. Inspired by simple constructions achieved for the case of disks and the half-plane, we reformulate bit threads in terms of a magnetic-like field generated by a current flowing through the boundary of the entangling region. The construction is possible for these highly symmetric settings, leading us to a modified Biot-Savart law in curved space that fully characterizes the entanglement structure of the state. For general entangling regions, the prescription breaks down as the corresponding modular Hamiltonians become inherently nonlocal. We develop a formalism for general shape deformations and derive a flow equation that accounts for these effects as a systematic expansion. We solve this equation for a complete set of small deformations and show that the structure of the expansion explicitly codifies the expected nonlocalities. Our findings are consistent with numerical results existing in the literature, and shed light on the fundamental nature of quantum entanglement as a nonlocal phenomenon.Comment: 28 pages, 5 figure

    Holography and Thermodynamics of 5D Dilaton-gravity

    Full text link
    The asymptotically-logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton potential are analyzed in detail. Such theories are holographically very close to pure Yang-Mills theory in four dimensions. The existence and uniqueness of black-hole solutions is shown. It is also shown that a Hawking-Page transition exists at finite temperature if and only if the potential corresponds to a confining theory. The physics of the transition matches in detail with that of deconfinement of the Yang-Mills theory. The high-temperature phase asymptotes to a free gluon gas at high temperature matching the expected behavior from asymptotic freedom. The thermal gluon condensate is calculated and shown to be crucial for the existence of a non-trivial deconfining transition. The condensate of the topological charge is shown to vanish in the deconfined phase.Comment: LaTeX, 61 pages (main body) + 58 pages (appendix), 25 eps figures. Revised version, published in JHEP. Two equations added in Section 7.4; typos corrected; references adde

    Probes on D3-D7 Quark-Gluon Plasmas

    Full text link
    We study the holographic dual model of quenched flavors immersed in a quark-gluon plasma with massless dynamical quarks in the Veneziano limit. This is modeled by embedding a probe D7 brane in a background where the backreaction of massless D7 branes has been taken into account. The background, and hence the effects, are perturbative in the Veneziano parameter N_f/N_c, therefore giving small shifts of all magnitudes like the constituent mass, the quark condensate, and several transport coefficients. We provide qualitative results for the effect of flavor degrees of freedom on the probes. For example, the meson melting temperature is enhanced, while the screening length is diminished. The drag force is also enhanced.Comment: 31 pages, 17 figure

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    NFE2L2/NRF2, OGG1, and cytokine responses of human gingival keratinocytes against oxidative insults of various origin

    Get PDF
    ObjectiveBacterial or tobacco-related insults induce oxidative stress in gingival keratinocytes. The aim of this study was to investigate anti-oxidative and cytokine responses of human gingival keratinocytes (HMK cells) against Porphyromonas gingivalis lipopolysaccharide (Pg LPS), nicotine, and 4-nitroquinoline N-oxide (4-NQO).Materials and methodsHMK cells were incubated with Pg LPS (1 µl/ml), nicotine (1.54 mM), and 4-NQO (1 µM) for 24 h. Intracellular and extracellular levels of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1Ra), IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) were measured with the Luminex® xMAP™ technique, and nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2) and 8-oxoguanine DNA glycosylase (OGG1) with Western blots. Data were statistically analyzed by two-way ANOVA with Bonferroni correction.ResultsAll tested oxidative stress inducers increased intracellular OGG1 levels, whereas only nicotine and 4-NQO induced NFE2L2/NRF2 levels. Nicotine, 4-NQO, and their combinational applications with Pg LPS induced the secretions of IL-1β and IL-1Ra, while that of IL-8 was inhibited by the presence of Pg LPS. MCP-1 secretion was suppressed by nicotine, alone and together with Pg LPS, while 4-NQO activated its secretion. Treatment of HMK cells with PgLPS, nicotine, 4-NQO, or their combinations did not affect VEGF levels.ConclusionPg LPS, nicotine, and 4-NQO induce oxidative stress and regulate anti-oxidative response and cytokine expressions in human gingival keratinocytes differently. These results may indicate that bacterial and tobacco-related insults regulate distinct pathways.</div

    Quantum critical lines in holographic phases with (un)broken symmetry

    Get PDF
    All possible scaling IR asymptotics in homogeneous, translation invariant holographic phases preserving or breaking a U(1) symmetry in the IR are classified. Scale invariant geometries where the scalar extremizes its effective potential are distinguished from hyperscaling violating geometries where the scalar runs logarithmically. It is shown that the general critical saddle-point solutions are characterized by three critical exponents (θ,z,ζ\theta, z, \zeta). Both exact solutions as well as leading behaviors are exhibited. Using them, neutral or charged geometries realizing both fractionalized or cohesive phases are found. The generic global IR picture emerging is that of quantum critical lines, separated by quantum critical points which correspond to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP. Important addition of an exponent characterizing the IR scaling of the electric potentia
    corecore