718 research outputs found
Estimating the dynamics and dependencies of accumulating mutations with applications to HIV drug resistance
We introduce a new model called the observed time conjunctive Bayesian network (OT-CBN) that describes the accumulation of genetic events (mutations) under partial temporal ordering constraints. Unlike other CBN models, the OT-CBN model uses sampling time points of genotypes in addition to genotypes themselves to estimate model parameters. We developed an expectation-maximization algorithm to obtain approximate maximum likelihood estimates by accounting for this additional information. In a simulation study, we show that the OT-CBN model outperforms the continuous time CBN (CT-CBN) (Beerenwinkel and Sullivant, 2009. Markov models for accumulating mutations. Biometrika 96(3), 645-661), which does not take into account individual sampling times for parameter estimation. We also show superiority of the OT-CBN model on several datasets of HIV drug resistance mutations extracted from the Swiss HIV Cohort Study databas
Integrase Strand Transfer Inhibitor Use and Cancer Incidence in a Large Cohort Setting
BACKGROUND
Limited data exist examining the association between incident cancer and cumulative integrase inhibitor (INSTI) exposure.
METHODS
Participants were followed from baseline (latest of local cohort enrollment or January 1, 2012) until the earliest of first cancer, final follow-up, or December 31, 2019. Negative binomial regression was used to assess associations between cancer incidence and time-updated cumulative INSTI exposure, lagged by 6 months.
RESULTS
Of 29 340 individuals, 74% were male, 24% were antiretroviral treatment (ART)-naive, and median baseline age was 44 years (interquartile range [IQR], 36-51). Overall, 13 950 (48%) individuals started an INSTI during follow-up. During 160 657 person-years of follow-up ([PYFU] median 6.2; IQR, 3.9-7.5), there were 1078 cancers (incidence rate [IR] 6.7/1000 PYFU; 95% confidence interval [CI], 6.3-7.1). The commonest cancers were non-Hodgkin lymphoma (n = 113), lung cancer (112), Kaposi's sarcoma (106), and anal cancer (103). After adjusting for potential confounders, there was no association between cancer risk and INSTI exposure (≤6 months vs no exposure IR ratio: 1.15 [95% CI, 0.89-1.49], >6-12 months; 0.97 [95% CI, 0.71-1.32], >12-24 months; 0.84 [95% CI, 0.64-1.11], >24-36 months; 1.10 [95% CI, 0.82-1.47], >36 months; 0.90 [95% CI, 0.65-1.26] [P = .60]). In ART-naive participants, cancer incidence decreased with increasing INSTI exposure, mainly driven by a decreasing incidence of acquired immune deficiency syndrome cancers; however, there was no association between INSTI exposure and cancer for those ART-experienced (interaction P < .0001).
CONCLUSIONS
Cancer incidence in each INSTI exposure group was similar, despite relatively wide CIs, providing reassuring early findings that increasing INSTI exposure is unlikely to be associated with an increased cancer risk, although longer follow-up is needed to confirm this finding
Cellular Viral Rebound after Cessation of Potent Antiretroviral Therapy Predicted by Levels of Multiply Spliced HIV-1 RNA Encoding nef
To characterize newly arising replication of human immunodeficiency virus (HIV) type 1 in vivo at the cellular level, distinct viral RNA species in peripheral blood mononuclear cells (PBMCs) from HIV-1-infected patients were monitored during 2 weeks of structured treatment interruption (STI). HIV-1 RNA encoding tat/rev and PBMC-associated virions were almost completely depleted during antiretroviral therapy and emerged simultaneously after 2 weeks of STI, thus specifically reflecting productive viral infection at the cellular level. The magnitude of these correlates of reappearing cellular viral replication was predicted by during-therapy levels of nef transcripts in PBMCs. Significant rebound of plasma viremia, representing the progeny of a broader range of anatomical compartments, preceded and predicted productive infection in PBMCs. Thus, cellular viral rebound in PBMCs likely was primed before STI by the expression of nef in HIV-1-infected PBMCs that lacked virion production and was subsequently triggered by the plasma viremia that preceded the recurrence of productively infected PBMC
HIV-1 Superinfection in an HIV-2-Infected Woman with Subsequent Control of HIV-1 Plasma Viremia
A human immunodeficiency virus type 2 (HIV-2)-infected woman experienced asymptomatic superinfection with HIV-1 subtype AG. She did not have cross-neutralizing autologous HIV-1 antibodies before and shortly after HIV-1 superinfection. This evidence supports a mechanism other than cross-neutralizing antibodies for the mild course of HIV-1 infection in this woma
Frequency and Spectrum of Unexpected Clinical Manifestations of Primary HIV-1 Infection
We studied the clinical manifestations among 290 patients with documented primary human immunodeficiency virus type 1 infection (PHI) of whom 30% presented with unexpected patterns of signs and symptoms or occurrence of opportunistic diseases. Morbidity associated with PHI was substantia
A highly virulent variant of HIV-1 circulating in the Netherlands
We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence
Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery
Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner
Impact of scaling up dolutegravir on antiretroviral resistance in South Africa: A modeling study.
BACKGROUND
Rising resistance of HIV-1 to non-nucleoside reverse transcriptase inhibitors (NNRTIs) threatens the success of the global scale-up of antiretroviral therapy (ART). The switch to WHO-recommended dolutegravir (DTG)-based regimens could reduce this threat due to DTG's high genetic barrier to resistance. We used mathematical modeling to predict the impact of the scale-up of DTG-based ART on NNRTI pretreatment drug resistance (PDR) in South Africa, 2020 to 2040.
METHODS AND FINDINGS
We adapted the Modeling Antiretroviral drug Resistance In South Africa (MARISA) model, an epidemiological model of the transmission of NNRTI resistance in South Africa. We modeled the introduction of DTG in 2020 under 2 scenarios: DTG as first-line regimen for ART initiators, or DTG for all patients, including patients on suppressive NNRTI-based ART. Given the safety concerns related to DTG during pregnancy, we assessed the impact of prescribing DTG to all men and in addition to (1) women beyond reproductive age; (2) women beyond reproductive age or using contraception; and (3) all women. The model projections show that, compared to the continuation of NNRTI-based ART, introducing DTG would lead to a reduction in NNRTI PDR in all scenarios if ART initiators are started on a DTG-based regimen, and those on NNRTI-based regimens are rapidly switched to DTG. NNRTI PDR would continue to increase if DTG-based ART was restricted to men. When given to all men and women, DTG-based ART could reduce the level of NNRTI PDR from 52.4% (without DTG) to 10.4% (with universal DTG) in 2040. If only men and women beyond reproductive age or on contraception are started on or switched to DTG-based ART, NNRTI PDR would reach 25.9% in 2040. Limitations include substantial uncertainty due to the long-term predictions and the current scarcity of knowledge about DTG efficacy in South Africa.
CONCLUSIONS
Our model shows the potential benefit of scaling up DTG-based regimens for halting the rise of NNRTI resistance. Starting or switching all men and women to DTG would lead to a sustained decline in resistance levels, whereas using DTG-based ART in all men, or in men and women beyond childbearing age, would only slow down the increase in levels of NNRTI PDR
- …