47 research outputs found

    Calcium channel blockers reduce the antiplatelet effect of clopidogrel

    Get PDF
    ObjectivesBecause of the known CYP3A4 inhibition by calcium-channel blockers (CCBs), we hypothesized that there might be a drug-drug interaction between clopidogrel and dihydropyridines in patients with coronary artery disease.BackgroundClopidogrel is activated by CYP3A4, which also metabolizes CCBs of the dihydropyridine class.MethodsResponsiveness to clopidogrel was assessed by the vasodilator-stimulated phosphoprotein (VASP) phosphorylation assay and aggregometry in 200 patients with coronary artery disease undergoing percutaneous coronary intervention.ResultsThe platelet reactivity index (PRI) (in the VASP assay, normal range 69% to 100%) was higher in patients receiving both clopidogrel and CCBs (61%) as compared with patients receiving clopidogrel without CCBs (48%). The absolute difference was 13% (95% confidence interval: 6% to 20%; p = 0.001), and the relative difference approached 21%. A decreased platelet inhibition by clopidogrel (PRI >69%) was seen in 40% of patients with concomitant CCB treatment and in 20% of patients without concomitant treatment (chi-square test, p = 0.008). Intake of CCB remained an independent predictor of reduced platelet inhibition by clopidogrel after adjustment for cardiovascular risk factors. Adenosine diphosphate-induced platelet aggregation was 30% higher in patients on concomitant CCB treatment compared with patients without CCBs (p = 0.046). Moreover, intake of CCBs was associated with adverse clinical outcome. In vitro incubation with CCBs (nimodipine, verapamil, amlodipine, and diltiazem) did not alter the PRI or the adenosine diphosphate–induced platelet aggregation of patients taking clopidogrel. This finding indicates that the negative effect occurs in vivo, conceivably at the level of the CYP3A4 cytochrome.ConclusionsCoadministration of CCBs is associated with decreased platelet inhibition by clopidogrel

    Acute Reversible Heart Failure Caused by Coronary Vasoconstriction due to Continuous 5-Fluorouracil Combination Chemotherapy

    Get PDF
    We present the case of a 51-year-old male patient who received adjuvant chemotherapy consisting of oxaliplatin, bolus and continuous 5-fluorouracil (5-FU) and leucovorin after anterior resection because of locally advanced rectal cancer. Preoperative chemotherapy with capecitabine (an oral 5-FU prodrug) had been well tolerated. Two days after initiation of the first course of chemotherapy, the patient reported typical chest pain. The ECG showed ST elevations and prominent T waves in almost all leads. Due to suspicion of a high-risk acute coronary syndrome, an urgent cardiac catheterization was performed. It showed a generally reduced coronary flow with multiple significant stenoses (including the ostia of the left and right coronary artery), as well as a highly reduced left ventricular function with diffuse hypokinesia. Due to the meanwhile completely stable situation of the patient after medical acute coronary syndrome treatment, no ad hoc intervention was performed to allow further discussion of the optimal management. Thereafter, the patient remained clinically asymptomatic, without any rise in cardiac necrosis parameters; only NT-pro-BNP was significantly elevated. A control cardiac catheterization 2 days later revealed a restored normal coronary artery flow with only coronary calcifications without significant stenoses, as well as a normal left ventricular ejection fraction. Cardiovascular symptoms occurred on the second day of continuous 5-FU treatment. As cardiotoxic effects seem to appear more frequently under continuous application of 5-FU, compared to the earlier established 5-FU bolus regimens, treating medical oncologists should pay special attention to occurring cardiac symptoms and immediately interrupt 5-FU chemotherapy and start a cardiologic work-up

    CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT)

    Get PDF
    Background. Recently, we identified a microduplication in chromosomal band 1q21.1 encompassing the CHD1L/ALC1 gene encoding a chromatin-remodelling enzyme in congenital anomalies of the kidneys and urinary tract (CAKUT) patient. Methods. To explore the role of CHD1L in CAKUT, we screened 85 CAKUT patients for mutations in the CHD1L gene and performed functional analyses of the three heterozygous missense variants detected. In addition, we quantitatively determined CHD1L expression in multiple human fetal and adult tissues and analysed expression of CHD1L protein in human embryonal, adult and hydronephrotic kidney sections. Results. Two of three novel heterozygous missense variants identified in three patients were not found in >400 control chromosomes. All variants lead to amino acid substitutions in or near the CHD1L macro domain, a poly-ADP-ribose (PAR)-binding module interacting with PAR polymerase 1 (PARP1), and showed decreased interaction with PARP1 by pull-down assay of transfected cell lysates. Quantitative messenger RNA analysis demonstrated high CHD1L expression in human fetal kidneys, and levels were four times higher than in adult kidneys. In the human embryo at 7-11 weeks gestation, CHD1L immunolocalized in the early ureteric bud and the S- and comma-shaped bodies, critical stages of kidney development. In normal postnatal sections, CHD1L was expressed in the cytoplasm of tubular cells in all tubule segments. CHD1L expression appeared higher in the hydronephrotic kidney of one patient with a hypofunctional CHD1L variant than in normal kidneys, recapitulating high fetal levels. Conclusion. Our data suggest that CHD1L plays a role in kidney development and may be a new candidate gene for CAKU

    Unexpected Course of Nonlinear Cardiac Interbeat Interval Dynamics during Childhood and Adolescence

    Get PDF
    The fluctuations of the cardiac interbeat series contain rich information because they reflect variations of other functions on different time scales (e.g., respiration or blood pressure control). Nonlinear measures such as complexity and fractal scaling properties derived from 24 h heart rate dynamics of healthy subjects vary from childhood to old age. In this study, the age-related variations during childhood and adolescence were addressed. In particular, the cardiac interbeat interval series was quantified with respect to complexity and fractal scaling properties. The R-R interval series of 409 healthy children and adolescents (age range: 1 to 22 years, 220 females) was analyzed with respect to complexity (Approximate Entropy, ApEn) and fractal scaling properties on three time scales: long-term (slope ÎČ of the power spectrum, log power vs. log frequency, in the frequency range 10−4 to 10−2 Hz) intermediate-term (DFA, detrended fluctuation analysis, α2) and short-term (DFA α1). Unexpectedly, during age 7 to 13 years ÎČ and ApEn were higher compared to the age <7 years and age >13 years (ÎČ: −1.06 vs. −1.21; ApEn: 0.88 vs. 0.74). Hence, the heart rate dynamics were closer to a 1/f power law and most complex between 7 and 13 years. However, DFA α1 and α2 increased with progressing age similar to measures reflecting linear properties. In conclusion, the course of long-term fractal scaling properties and complexity of heart rate dynamics during childhood and adolescence indicates that these measures reflect complex changes possibly linked to hormonal changes during pre-puberty and puberty
    corecore