4 research outputs found
1,25-dihydroxyvitamin-D3 but not the clinically applied marker 25-hydroxyvitamin-D3 predicts survival after stem cell transplantation
Abstract
The serum level of 25-hydroxyvitamin-D3 is accepted as marker for a person’s vitamin D status but its role for the outcome of allogeneic hematopoietic stem cell transplantation (HSCT) is controversially discussed. The impact of 1,25-dihydroxyvitamin-D3 on HSCT outcome, however, has never been studied. In a discovery cohort of 143 HSCT patients we repeatedly (day −16 to 100) measured 1,25-dihydroxyvitamin-D3 and in comparison the well-established marker for serum vitamin D status 25-hydroxyvitamin-D3. Only lower 1,25-dihydroxyvitamin-D3 levels around HSCT (day −2 to 7, peritransplant) were significantly associated with higher 1-year treatment-related mortality (TRM) risk (Mann–Whitney U test, P = 0.001). This was confirmed by Cox-model regression without and with adjustment for baseline risk factors and severe acute Graft-versus-Host disease (aGvHD; unadjusted P = 0.001, adjusted P = 0.005). The optimal threshold for 1,25-dihydroxyvitamin-D3 to identify patients at high risk was 139.5 pM. Also in three replication cohorts consisting of altogether 365 patients 1,25-dihydroxyvitamin-D3 levels below 139.5 pM had a 3.3-fold increased risk of TRM independent of severe aGvHD compared to patients above 139.5 pM (Cox-model unadjusted P < 0.0005, adjusted P = 0.001). Our data highlight peritransplant 1,25-dihydroxyvitamin-D3 levels but not the commonly monitored 25-hydroxyvitamin-D3 levels as potent predictor of 1-year TRM and suggest to monitor both vitamin D metabolites in HSCT patients
Anti-Thymocyte Globulin Treatment Augments 1,25-Dihydroxyvitamin D3 Serum Levels in Patients Undergoing Hematopoietic Stem Cell Transplantation
Application of anti-thymocyte globulin (ATG) is a widely used strategy for the prevention of graftversus-host disease (GvHD). As vitamin D3 serum levels are also discussed to affect hematopoietic stem cell transplantation (HSCT) outcome and GvHD development, we analysed a possible interplay between ATG treatment and serum levels of 25-hydroxyvitamin D3and 1,25-dihydroxyvitaminD3in 4HSCT cohorts withdifferent vitaminD3supplementation. ATG is significantly associated with higher serum level of 1,25 dihydroxyvitamin D3 around HSCT (day -2 to 7, peri-transplant), however only in patients with adequate levels of its precursor 25-hydroxyvitamin D3. ATG exposure had no impact on overall survival in patients supplemented with high dose vitamin D3, but was associated with higher risk of one-year treatment-related mortality (log rank test p=0.041) in patients with no/low vitamin D3 supplementation. However, the difference failed to reach significance applying a Cox-model regression without and with adjustment for baseline risk factors (unadjusted P=0,058, adjusted p=0,139). To shed some light on underlying mechanisms, we investigated the impact of ATG on 1,25-DihydroxyvitaminD3 production by human dendritic cells (DCs) in vitro.ATGincreased gene expression ofCYP27B1, the enzyme responsible for the conversion of 25-hydroxyvitamin D3 into 1,25-dihydroxyvitamin D3, which was accompanied by higher 1,25-dihydroxyvitamin D3levels in ATG-treatedDCculture supernatants.Our data demonstrate a cooperative effect of
25-hydroxyvitamin D3 and ATG in the regulation of 1,25-dihydroxyvitamin D3 production. This finding may be of importance in the context of HSCT, where early high levels of 1,25- dihydroxyvitamin D3 levels have been shown to be predictive for lower transplant related mortality and suggest that vitamin D3 supplementation may especially be important in patients receiving ATG for GvHD prophylaxis
1,25-dihydroxyvitamin-D3 but not the clinically applied marker 25-hydroxyvitamin-D3 predicts survival after stem cell transplantation
The serum level of 25-hydroxyvitamin-D3 is accepted as marker for a person’s vitamin D status but its role for the outcome of allogeneic hematopoietic stem cell transplantation (HSCT) is controversially discussed. The impact of 1,25-dihydroxyvitamin-D3 on HSCT outcome, however, has never been studied. In a discovery cohort of 143 HSCT patients we repeatedly (day −16 to 100) measured 1,25-dihydroxyvitamin-D3 and in comparison the well-established marker for serum vitamin D status 25-hydroxyvitamin-D3. Only lower 1,25-dihydroxyvitamin-D3 levels around HSCT (day −2 to 7, peritransplant) were significantly associated with higher 1-year treatment-related mortality (TRM) risk (Mann–Whitney U test, P = 0.001). This was confirmed by Cox-model regression without and with adjustment for baseline risk factors and severe acute Graft-versus-Host disease (aGvHD; unadjusted P = 0.001, adjusted P = 0.005). The optimal threshold for 1,25-dihydroxyvitamin-D3 to identify patients at high risk was 139.5 pM. Also in three replication cohorts consisting of altogether 365 patients 1,25-dihydroxyvitamin-D3 levels below 139.5 pM had a 3.3-fold increased risk of TRM independent of severe aGvHD compared to patients above 139.5 pM (Cox-model unadjusted P < 0.0005, adjusted P = 0.001). Our data highlight peritransplant 1,25-dihydroxyvitamin-D3 levels but not the commonly monitored 25-hydroxyvitamin-D3 levels as potent predictor of 1-year TRM and suggest to monitor both vitamin D metabolites in HSCT patients