34 research outputs found
Antibody response to SARS-CoV-2 vaccines in patients with relapsing multiple sclerosis treated with evobrutinib: A Bruton\u27s tyrosine kinase inhibitor
BACKGROUND: Evobrutinib is an oral, central nervous system (CNS)-penetrant and highly selective covalent Bruton\u27s tyrosine kinase inhibitor under clinical development for patients with relapsing multiple sclerosis (RMS).
OBJECTIVE: To investigate the effect of evobrutinib on immune responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinated patients with RMS from a Phase II trial (NCT02975349).
METHODS: A
RESULTS: In the vaccinated subgroup, mean/minimum evobrutinib exposure pre-vaccination was 105.2/88.7 weeks. In total, 43 of 45 patients developed/increased S1/S2 IgG antibody levels post-vaccination; one patient\u27s antibody response remained negative post-vaccination and the other had antibody levels above the upper limit of detection, both pre- and post-vaccination. Most patients (
CONCLUSION: These results suggest evobrutinib, an investigational drug with therapeutic potential for patients with RMS, acts as an immunomodulator, that is, it inhibits aberrant immune cell responses in patients with RMS, while responsiveness to foreig
Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn.
Descending control of nociceptive processing, by pathways originating in the rostral ventromedial medulla (RVM) and terminating in the dorsal horn, contributes to behavioural hypersensitivity in a number of pain models. Two facilitatory pathways have been identified and are characterized by serotonin (5-HT) content or expression of the mu opiate receptor. Here we investigated the contribution of these pathways to inflammatory joint pain behaviour and gene expression changes in the dorsal horn
Modulation of synaptic transmission by nociceptin/orphanin FQ and nocistatin in the spinal cord dorsal horn of mutant mice lacking the nociceptin/orphanin FQ receptor
Nociceptin/orphanin FQ (N/OFQ) and nocistatin (NST) are two neuropeptides derived from the same precursor protein that exhibit opposing effects on spinal neurotransmission and nociception. Here, we have used whole-cell, patch-clamp recordings from visually identified neurons in spinal cord dorsal horn slices of genetically modified mice to investigate the role of the N/OFQ receptor (N/OFQ-R) in the modulatory action of both peptides on excitatory glutamatergic and inhibitory glycinergic and gamma-aminobutyric acid (GABA)-ergic synaptic transmission. In wild-type mice, N/OFQ selectively suppressed excitatory transmission in a concentration-dependent manner but left inhibitory synaptic transmission unaffected. In contrast, NST reduced only inhibitory but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory synaptic transmission. N/OFQ-mediated inhibition of excitatory transmission was completely absent in N/OFQ-R receptor-deficient (N/OFQ-R(-/-)) mice and significantly reduced in heterozygous (N/OFQ-R(+/-)) mice, whereas the action of NST on inhibitory neurotransmission was completely retained. To test for the relevance of these results for spinal nociception, we investigated the effects of intrathecally injected N/OFQ in the mouse formalin test, an animal model of tonic pain. N/OFQ (3 nmol/mouse) induced significant antinociception in wild-type mice, but had no antinociceptive effects in N/OFQ-R(-/-) mice. These results indicate that the inhibitory action of N/OFQ on excitatory glutamatergic synaptic transmission and its spinal antinociceptive action are mediated via the N/OFQ receptor, whereas the action of NST is independent of this receptor
Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes
PURPOSE: Primary open-angle glaucoma (POAG) is the predominant form of chronic glaucoma, but the underlying pathologic mechanisms are largely unknown. Because prostaglandins (PGs) have been introduced into POAG treatment with remarkable success, this study was undertaken to investigate whether a change in the expression of the PG-synthesizing enzymes cyclooxygenase (COX)-1 and -2 might be involved in the pathogenesis of POAG. METHODS: Expression of COX-1 and -2 was assessed by confocal laser microscopy, immunohistochemistry, Western blot analysis, and real-time RT-PCR in human eyes with different forms of glaucoma (primary open-angle, angle-closure, congenital juvenile, and steroid-induced), as well as in age-matched control eyes. Additionally, PGE2 was measured in aqueous humor by means of an enzyme-linked immunoassay as a product of COX activity. RESULTS: In normal eyes, ocular COX-1 and -2 expression were largely confined to the nonpigmented secretory epithelium of the ciliary body. By immunohistochemistry and real-time RT-PCR, COX-2 expression was completely lost in the nonpigmented secretory epithelium of the ciliary body of eyes with end-stage POAG, whereas COX-1 expression was unchanged. By immunohistochemistry, in the ciliary bodies of eyes in five patients with diagnosis of early POAG, eyes in two had complete loss of COX-2 expression and in three showed only a few remaining scattered COX-2-expressing cells. COX-2 expression in the ciliary body was also lost in patients with steroid-induced glaucoma and was reduced in patients receiving topical steroid treatment. Eyes of patients with either congenital juvenile or angle-closure glaucoma showed COX-2 expression indistinguishable from control eyes. Aqueous humor of eyes with POAG contained significantly less PGE2 than control eyes. CONCLUSIONS: Both cyclooxygenase isoforms are constitutively expressed in the normal human eye. Specific loss of COX-2 expression in the nonpigmented secretory epithelium of the ciliary body appears to be linked to the occurrence of POAG and steroid-induced glaucoma