1,552 research outputs found
Critical Decay at Higher-Order Glass-Transition Singularities
Within the mode-coupling theory for the evolution of structural relaxation in
glass-forming systems, it is shown that the correlation functions for density
fluctuations for states at A_3- and A_4-glass-transition singularities can be
presented as an asymptotic series in increasing inverse powers of the logarithm
of the time t: , where
with p_n denoting some polynomial and x=ln (t/t_0). The results are
demonstrated for schematic models describing the system by solely one or two
correlators and also for a colloid model with a square-well-interaction
potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in
Colloidal Systems with Short-Range Attractions", Messina, Italy, December
2003 (submitted
Critical Dynamics in Glassy Systems
Critical dynamics in various glass models including those described by mode
coupling theory is described by scale-invariant dynamical equations with a
single non-universal quantity, i.e. the so-called parameter exponent that
determines all the dynamical critical exponents. We show that these equations
follow from the structure of the static replicated Gibbs free energy near the
critical point. In particular the exponent parameter is given by the ratio
between two cubic proper vertexes that can be expressed as six-point cumulants
measured in a purely static framework.Comment: 24 pages, accepted for publication on PRE. Discussion of the
connection with MCT added in the Conclusion
Mode Coupling relaxation scenario in a confined glass former
Molecular dynamics simulations of a Lennard-Jones binary mixture confined in
a disordered array of soft spheres are presented. The single particle dynamical
behavior of the glass former is examined upon supercooling. Predictions of mode
coupling theory are satisfied by the confined liquid. Estimates of the
crossover temperature are obtained by power law fit to the diffusion
coefficients and relaxation times of the late region. The exponent
of the von Schweidler law is also evaluated. Similarly to the bulk, different
values of the exponent are extracted from the power law fit to the
diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on
Europhysics Letter
Asymptotic analysis of mode-coupling theory of active nonlinear microrheology
We discuss a schematic model of mode-coupling theory for force-driven active
nonlinear microrheology, where a single probe particle is pulled by a constant
external force through a dense host medium. The model exhibits both a glass
transition for the host, and a force-induced delocalization transition, where
an initially localized probe inside the glassy host attains a nonvanishing
steady-state velocity by locally melting the glass. Asymptotic expressions for
the transient density correlation functions of the schematic model are derived,
valid close to the transition points. There appear several nontrivial time
scales relevant for the decay laws of the correlators. For the nonlinear
friction coeffcient of the probe, the asymptotic expressions cause various
regimes of power-law variation with the external force, and two-parameter
scaling laws.Comment: 17 pages, 12 figure
Structural relaxation in orthoterphenyl: a schematic mode coupling theory model analysis
Depolarized light scattering spectra of orthoterphenyl showing the emergence
of the structural relaxation below the oscillatory microscopic excitations are
described by solutions of a schematic mode--coupling--theory model
The mean-squared displacement of a molecule moving in a glassy system
The mean-squared displacement (MSD) of a hard sphere and of a dumbbell
molecule consisting of two fused hard spheres immersed in a dense hard-sphere
system is calculated within the mode-coupling theory for ideal liquid-glass
transitions. It is proven that the velocity correlator, which is the second
time derivative of the MSD, is the negative of a completely monotone function
for times within the structural-relaxation regime. The MSD is found to exhibit
a large time interval for structural relaxation prior to the onset of the
-process which cannot be described by the asymptotic formulas for the
mode-coupling-theory-bifurcation dynamics. The -process for molecules
with a large elongation is shown to exhibit an anomalously wide cross-over
interval between the end of the von-Schweidler decay and the beginning of
normal diffusion. The diffusivity of the molecule is predicted to vary
non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin
Universal and non-universal features of glassy relaxation in propylene carbonate
It is demonstrated that the susceptibility spectra of supercooled propylene
carbonate as measured by depolarized-light-scattering, dielectric-loss, and
incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window
are simultaneously described by the solutions of a two-component schematic
model of the mode-coupling theory (MCT) for the evolution of glassy dynamics.
It is shown that the universal beta-relaxation-scaling laws, dealing with the
asymptotic behavior of the MCT solutions, describe the qualitative features of
the calculated spectra. But the non-universal corrections to the scaling laws
render it impossible to achieve a complete quantitative description using only
the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.
Nearly-logarithmic decay in the colloidal hard-sphere system
Nearly-logarithmic decay is identified in the data for the mean-squared
displacement of the colloidal hard-sphere system at the liquid-glass transition
[v. Megen et. al, Phys. Rev. E 58, 6073(1998)]. The solutions of mode-coupling
theory for the microscopic equations of motion fit the experimental data well.
Based on these equations, the nearly-logarithmic decay is explained as the
equivalent of a beta-peak phenomenon, a manifestation of the critical
relaxation when the coupling between of the probe variable and the density
fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula
including corrections is derived from the microscopic equations of motion,
which describes the experimental data for three decades in time.Comment: 4 pages, 3 figure
Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines
Within the mode-coupling theory for ideal glass-transitions, the mean-squared
displacement and the correlation function for density fluctuations are
evaluated for a colloidal liquid of particles interacting with a square-well
potential for states near the crossing of the line for transitions to a gel
with the line for transitions to a glass. It is demonstrated how the dynamics
is ruled by the interplay of the mechanisms of arrest due to hard-core
repulsion and due to attraction-induced bond formation as well as by a nearby
higher-order glass-transition singularity. Application of the universal
relaxation laws for the slow dynamics near glass-transition singularities
explains the qualitative features of the calculated time dependence of the
mean-squared displacement, which are in accord with the findings obtained in
molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66,
041402 (2002)]. Correlation functions found by photon-correlation spectroscopy
in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can
be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure
- âŠ