11 research outputs found

    Mapping Changes in Fractional Vegetation Cover on the Namib Gravel Plains with Satellite-Retrieved Land Surface Emissivity Data

    Get PDF
    Monitoring changes in vegetation cover over time is crucial for understanding the spatial distribution of rainfall, as well as the dynamics of plants and animals in the Namib desert. Traditional vegetation indices have limitations in capturing changes in vegetation cover within water-limited ecosystems like the Namib gravel plains. Spectral emissivity derived from thermal infrared remote sensing has recently emerged as a promising tool for distinguishing between bare ground and non-green vegetation in arid environments. This study investigates the potential of satellite-derived emissivities for mapping changes in fractional vegetation cover across the Namib gravel plains. Analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) band 29 (λ = 8.55 ”m) emissivity time series from 2001 to 2021, our findings demonstrate the ability of both Normalized Difference Vegetation Index (NDVI) and emissivity to detect sudden vegetation growth on the gravel plains. Emissivity additionally allows monitoring the extent of desiccated grass over several years after a rainfall event. Our results support a relationship between the change in fractional vegetation cover, the amount of rainfall and emissivity change magnitude. Information from NDVI and emissivity therefore provide complementary information for assessing vegetation in arid environments

    Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years

    Get PDF
    Global land surface temperature (LST) data derived from satellite-based infrared radiance measurements are highly valuable for various applications in climate research. While in situ validation of satellite LST data sets is a challenging task, it is needed to obtain quantitative information on their accuracy. In the standardised approach to multi-sensor validation presented here for the first time, LST data sets obtained with state-of-the-art retrieval algorithms from several sensors (AATSR, GOES, MODIS, and SEVIRI) are matched spatially and temporally with multiple years of in situ data from globally distributed stations representing various land cover types in a consistent manner. Commonality of treatment is essential for the approach: all satellite data sets are projected to the same spatial grid, and transformed into a common harmonized format, thereby allowing comparison with in situ data to be undertaken with the same methodology and data processing. The large data base of standardised satellite LST provided by the European Space Agency’s GlobTemperature project makes previously difficult to perform LST studies and applications more feasible and easier to implement. The satellite data sets are validated over either three or ten years, depending on data availability. Average accuracies over the whole time span are generally within ±2.0 K during night, and within ± 4.0 K during day. Time series analyses over individual stations reveal seasonal cycles. They stem, depending on the station, from surface anisotropy, topography, or heterogeneous land cover. The results demonstrate the maturity of the LST products, but also highlight the need to carefully consider their temporal and spatial properties when using them for scientific purposes

    A global long-term (1981–2000) land surface temperature product for NOAA AVHRR

    Get PDF
    Land surface temperature (LST) plays an important role in the research of climate change and various land surface processes. Before 2000, global LST products with relatively high temporal and spatial resolutions are scarce, despite a variety of operational satellite LST products. In this study, a global 0.05∘×0.05∘ historical LST product is generated from NOAA advanced very-high-resolution radiometer (AVHRR) data (1981–2000), which includes three data layers: (1) instantaneous LST, a product generated by integrating several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST; and (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and column water vapor content of 0.04 and 1.0 g cm−2, respectively, evaluated against the simulation dataset, the RF-SWA method has a mean bias error (MBE) of less than 0.10 K and a standard deviation (SD) of 1.10 K. To compensate for the influence of orbital drift on LST, the retrieved RF-SWA LST was normalized with an improved ODC method. The RF-SWA LST were validated with in situ LST from Surface Radiation Budget (SURFRAD) sites and water temperatures obtained from the National Data Buoy Center (NDBC). Against the in situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of −1.59–2.71 K, and SD is 1.18 K with a range of 0.84–2.76 K. Since water temperature only changes slowly, the validation of ODC LST was limited to SURFRAD sites, for which the MBE is 0.54 K with a range of −1.05 to 3.01 K and SD is 3.57 K with a range of 2.34 to 3.69 K, indicating good product accuracy. As global historical datasets, the new AVHRR LST products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can be used as input to related land surface models and environmental applications. Furthermore, in support of the scientific research community, the datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a), https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c), and https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b)

    Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data

    Get PDF
    Land surface temperature (LST) is an important indicator of global ecological environment and climate change. The Sea and Land Surface Temperature Radiometer (SLSTR) onboard the recently launched Sentinel-3 satellites provides high-quality observations for estimating global LST. The algorithm of the official SLSTR LST product is a split-window algorithm (SWA) that implicitly assumes and utilizes knowledge of land surface emissivity (LSE). The main objective of this study is to investigate alternative SLSTR LST retrieval algorithms with an explicit use of LSE. Seventeen widely accepted SWAs, which explicitly utilize LSE, were selected as candidate algorithms. First, the SWAs were trained using a comprehensive global simulation dataset. Then, using simulation data as well as in-situ LST, the SWAs were evaluated according to their sensitivity and accuracy: eleven algorithms showed good training accuracy and nine of them exhibited low sensitivity to uncertainties in LSE and column water vapor content. Evaluation based on two global simulation datasets and a regional simulation dataset showed that these nine SWAs had similar accuracy with negligible systematic errors and RMSEs lower than 1.0 K. Validation based on in-situ LST obtained for six sites further confirmed the similar accuracies of the SWAs, with the lowest RMSE ranges of 1.57–1.62 K and 0.49−0.61 K for Gobabeb and Lake Constance, respectively. While the best two SWAs usually yielded good accuracy, the official SLSTR LST generally had lower accuracy. The SWAs identified and described in this study may serve as alternative algorithms for retrieving LST products from SLSTR data

    Impact of High Concentrations of Saharan Dust Aerosols on Infrared-Based Land Surface Temperature Products

    Get PDF
    An analysis of three operational satellite-based thermal-infrared land surface temperature (LST) products is presented for conditions of heavy dust aerosol loading. The LST products are compared against ERA5’s skin temperature (SKT) across the Sahara Desert and Sahel region, where high concentrations of dust aerosols are prevalent. Large anomalous differences are found between satellite LST and ERA5’s SKT during the periods of highest dust activity, and satellite–ERA5 differences are shown to be strongly related to dust aerosol optical depth (DuAOD) at 550 nm, indicating an underestimation of LST in conditions of heavy dust aerosol loading. In situ measurements from two ground stations in the Sahel region provide additional evidence of this underestimation, showing increased biases of satellite LST with DuAOD, and no significant dependence of ERA5’s SKT biases on dust aerosol concentrations. The impact of atmospheric water vapor content on LST and SKT is also examined, but dust aerosols are shown to be the primary driver of the inaccurate LSTs observed. Based on comparisons with in situ data, we estimate an aerosol-induced underestimation of LST of approximately 0.9 K for every 0.1 increase in DuAOD. Analysis of brightness temperatures (BTs) in the thermal infrared atmospheric window reveals that dust aerosols have the opposite effect on BT differences compared to water vapor, leading to an underestimation of atmospheric correction by the LST retrieval algorithms. This article highlights a shortcoming of current operational LST retrieval algorithms that must be addressed

    Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor

    Get PDF
    Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed

    Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years

    No full text
    Global land surface temperature (LST) data derived from satellite-based infrared radiance measurements are highly valuable for various applications in climate research. While in situ validation of satellite LST data sets is a challenging task, it is needed to obtain quantitative information on their accuracy. In the standardised approach to multi-sensor validation presented here for the first time, LST data sets obtained with state-of-the-art retrieval algorithms from several sensors (AATSR, GOES, MODIS, and SEVIRI) are matched spatially and temporally with multiple years of in situ data from globally distributed stations representing various land cover types in a consistent manner. Commonality of treatment is essential for the approach: all satellite data sets are projected to the same spatial grid, and transformed into a common harmonized format, thereby allowing comparison with in situ data to be undertaken with the same methodology and data processing. The large data base of standardised satellite LST provided by the European Space Agency’s GlobTemperature project makes previously difficult to perform LST studies and applications more feasible and easier to implement. The satellite data sets are validated over either three or ten years, depending on data availability. Average accuracies over the whole time span are generally within ±2.0 K during night, and within ± 4.0 K during day. Time series analyses over individual stations reveal seasonal cycles. They stem, depending on the station, from surface anisotropy, topography, or heterogeneous land cover. The results demonstrate the maturity of the LST products, but also highlight the need to carefully consider their temporal and spatial properties when using them for scientific purposes

    Investigation and validation of two all-weather land surface temperature products with in-situ measurements

    No full text
    ABSTRACTThe need for cross-comparison and validation of all-weather Land Surface Temperature (LST) products has arisen due to the release of multiple such products aimed at providing comprehensive all-weather monitoring capabilities. In this study, we focus on validating two well-established all-weather LST products (i.e. MLST-AS and TRIMS LST) against in-situ measurements obtained from four high-quality LST validation sites: Evora, Gobabeb, KIT-Forest, and Lake Constance. For the land sites, MLST-AS exhibits better accuracy, with RMSEs ranging from 1.6 K to 2.1 K, than TRIMS LST, the RMSEs of which range from 1.9 K to 3.1 K. Because MLST-AS pixels classified as “inland water” are masked out, the validation over Lake Constance is limited to TRIMS LST: it yields a RMSE of 1.6 K. Furthermore, the validation results show that MLST-AS and TRIMS LST exhibit better accuracy under clear-sky conditions than unclear-sky conditions across all sites. Since the accuracy of the all-weather LST products is considerably affected by the input clear-sky LST products, we further compare the all-weather LST with the corresponding input clear-sky LST to conduct an error source analysis. Considering the clear-sky pixels on MLST-AS directly using the estimates from MLST, the error source analysis is limited to examining TRIMS LST and its input (i.e. MODIS LST). The findings indicate that TRIMS LST is highly correlated with MODIS LST. The investigation and validation of the two selected all-weather LST products objectively evaluate their accuracy and stability, which provides important information for applications of these all-weather LST products
    corecore