129 research outputs found

    Fracture toughness of thermal barrier coatings determined by micro cantilever bending tests

    Get PDF
    To investigate the local fracture toughness of thin coatings new small scale methods like FIB milling of micro cantilever are used. Webler et al. used this technique for measuring the fracture toughness of NiAl bond [1]. This method can also be used to investigate the local fracture toughness of thermal barrier coatings. The fracture toughness of ceramic coatings can be determined by different indentation techniques [2]. The drawback of these methods is the analysis of the KIc-value without the specific knowledge of the crack front propagation, which can only be determined after the experiment. By using micro-cantilever produced by ion beam milling it is possible to measure the local fracture toughness with freestanding micro-cantilever independent of the substrate. Therefore two yttrium stabilized zirconia (YSZ) top coats with a thickness of 250μm, which were deposited by suspension plasma spraying on a layer of Amdry 9954 bond coat and IN 738 substrate with different standoff distances of about 70 and 100 mm, were investigated. Figure 1. shows the micro-cantilever with the initial crack (a) before testing. Please click Additional Files below to see the full abstract

    A new method for microscale cyclic crack growth characterization from notched microcantilevers and application to single crystalline tungsten and a metallic glass

    Get PDF
    The lifetime of most metals is limited by cyclic loads, ending in fatigue failure. The progressive growth of cracks ends up in catastrophic failure. An advanced method is presented for the determination of cyclic crack growth on the microscale using a nanoindenter, which allows the characterization of > 10,000 loading cycles. It uses focused ion beam fabricated notched microcantilevers. The method has been validated by cyclic bending metallic glass and tungsten microcantilevers. The experiments reveal a stable crack growth during the lifetime of both samples. The metallic glass shows less plasticity due to the absence of dislocations, but shows shearing caused by the deformation. The crack growth rates determined in the tests follow Paris' power law relationship. The results are reliable, reproducible and comparable with macroscopic setups. Due to the flexibility of the method, it is suitable for the characterization of specific microstructural features, like single phases, grain boundaries or different grain orientations

    Исследование закономерностей модификации стали 12Х18Н10Т высокоинтенсивной имплантацией ионов азота

    Get PDF
    В данной работе представлены результаты по изучению формирования пучков ионов азота и их воздействие на поверхность стали 12Х18Н10Т в условиях компенсации распыления. Также было изучено формирование высокоинтенсивных пучков ионов титана. Впервые описан метод измерения глубины легированной примеси при помощи прибора CALOTEST.This paper presents the results of studying the formation of nitrogen ion beams and their effect on the surface of 12X18H10T steel under conditions of sputtering compensation. The formation of high-intensity beams of titanium ions was also studied. For the first time, a method for measuring the depth of an alloyed impurity using the CALOTEST device is described

    Influence of microstructure on creep strength of MRI 230D Mg alloy

    No full text

    Indentation size effect in spherical and pyramidal indentations

    No full text
    corecore