8 research outputs found

    Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21(waf1/cip1)

    Get PDF
    Background/Aims: We investigated the effect of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone on growth and TRAIL-induced apoptosis in carcinoid cells. Methods: Carcinoid cells were incubated without and with pioglitazone. Effects on growth were examined by cell count and cell cycle analysis. p21(waf1/cip1) expression was determined by Western blotting. Cytotoxicity assay was performed by FACS analysis. Results: Pioglitazone suppressed the growth and induced apoptosis of carcinoid cells. Additionally, pioglitazone significantly enhanced carcinoid cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The enhancement of TRAIL-induced apoptosis was associated with an upregulation of cyclin-dependent kinase inhibitor p21(waf1/cip1) in pioglitazone-treated carcinoid cells. Importantly, overexpression of p21(waf1/cip1) in carcinoid cells by adenoviral gene transfer of p21 sensitized them to TRAIL-induced apoptosis. Conclusions: These results suggest that pioglitazone inhibits cell growth and sensitizes cells to TRAIL-induced apoptosis by induction of p21(waf1/cip1). Therefore, pioglitazone can be an effective therapeutic adjuvant for the treatment of carcinoid tumors. Copyright (C) 2001 S. Karger AG, Basel

    Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review

    Full text link

    EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    Get PDF
    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy
    corecore