2 research outputs found

    Detection of displacements on Tenerife Island, Canaries, using radar interferometry

    Get PDF
    Tenerife is one of the most well monitored islands of the Canaries, but the surveillance generally is centred on Las Canadas Caldera, where the Teide volcano is located. In the last 180 000 yr, the eruptions on Tenerife Island have never occurred in the same volcanic structure, except for the Teide and Pico Viejo central volcanic system, so that a complete monitoring network would have to cover the whole island. As a result, Synthetic Aperture Radar Interferometry (InSAR) is being used on Tenerife, because this space technique can provide a displacement map of the surface of the earth with centimetre precision. This paper presents the results obtained on Tenerife Island using 18 SAR images acquired by the ERS-1 and ERS-2 satellites during the period 1992-2000. Two important results have been obtained: no deformation on Las Canadas Caldera, coinciding with results obtained using terrestrial techniques, and two subsidence episodes outside monitoring areas in the NW of the island, in the region of the last historic eruptions. These results show that InSAR is a useful technique for monitoring the entire island, thus allowing us to discover deformations in areas that are not routinely or easily monitored. This technique has been used in combination with Global Positioning System (GPS) observation of a global network on the island to define a new geodetic monitoring system. The possible causes of the deformations observed have been studied in an endeavour to discern if they might be of natural origin, in particular linked to a reactivation of prior volcanic activity. Examination of the geophysical observations on the island, human activities underway and the results of the modelling seem to indicate that at least part of the deformations may be caused by changes in the groundwater level and therefore are not linked to a volcanic reactivation. This result is important because it implies that, if geodetic volcano monitoring is to be performed on the island, the system used must be capable of discerning between various possible origins of the deformation by analysing their patterns and ancillary information from other sources. In this regard, InSAR is a basic tool on account of its unpaired wide area coverage and spatial density

    GPS monitoring in the N-W part of the volcanic island of Tenerife, Canaries, Spain: Strategy and results

    No full text
    This paper describes design, observation methodology, results and interpretation of the GPS surveys conducted in the areas of the N-W of Tenerife where deformation was detected using InSAR. To avoid undesirable antenna positioning errors in the stations built using nails, we designed and used calibrated, fixed-length metal poles, allowing us to guarantee that the GPS antenna was stationed with a height repeatability of the order of 1 mm and of less than 3 millimeters on the horizontal plane. The results demonstrate that this system is ideal for field observation, especially to detect small displacements that might be masked by accidental errors in height measurements or centering when observed with a tripod. When observations were processed, we found that using different antenna models in the same session sometimes causes errors that can lead to rather inaccurate results. We also found that it is advisable to observe one or two stations in all the sessions. The results have reconfirmed the displacement in the Chio deformation zone for the period 1995-2000 and indicate a vertical rebound from 2000 to 2002. They also confirm that the subsidence detected by InSAR to the south of the Garachico village has continued since 2000, although the magnitude of the vertical deformation has increased from around 1 cm to more than 3 cm a year. Detected displacements could be due to groundwater level variation throughout the island. A first attempt of modelling has been made using a simple model. The results indicate that the observed deformation and the groundwater level variation are related in some way. The obtained results are very important because they might affect the design of the geodetic monitoring of volcanic reactivation on the island, which will only be actually useful if it is capable of distinguishing between displacements that might be linked to volcanic activity and those produced by other causes. Even though the study was limited to a given area of Tenerife, in the Canary Islands, some conclusions apply to, and are of general interest in similar geodynamic studies
    corecore