3,242 research outputs found

    Synchronization of networks with variable local properties

    Full text link
    We study the synchronization transition of Kuramoto oscillators in scale-free networks that are characterized by tunable local properties. Specifically, we perform a detailed finite size scaling analysis and inspect how the critical properties of the dynamics change when the clustering coefficient and the average shortest path length are varied. The results show that the onset of synchronization does depend on these properties, though the dependence is smooth. On the contrary, the appearance of complete synchronization is radically affected by the structure of the networks. Our study highlights the need of exploring the whole phase diagram and not only the stability of the fully synchronized state, where most studies have been done up to now.Comment: 5 pages and 3 figures. APS style. Paper to be published in IJBC (special issue on Complex Networks' Structure and Dynamics

    Explosive Synchronization Transitions in Scale-free Networks

    Full text link
    The emergence of explosive collective phenomena has recently attracted much attention due to the discovery of an explosive percolation transition in complex networks. In this Letter, we demonstrate how an explosive transition shows up in the synchronization of complex heterogeneous networks by incorporating a microscopic correlation between the structural and the dynamical properties of the system. The characteristics of this explosive transition are analytically studied in a star graph reproducing the results obtained in synthetic scale-free networks. Our findings represent the first abrupt synchronization transition in complex networks thus providing a deeper understanding of the microscopic roots of explosive critical phenomena.Comment: 6 pages and 5 figures. To appear in Physical Review Letter

    Dynamical Organization of Cooperation in Complex Topologies

    Get PDF
    In this Letter, we study how cooperation is organized in complex topologies by analyzing the evolutionary (replicator) dynamics of the Prisoner's Dilemma, a two-players game with two available strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotically, the population is partitioned into three subsets: individuals that always cooperate ({\em pure cooperators}), always defect ({\em pure defectors}) and those that intermittently change their strategy. In fact the size of the latter set is the biggest for a wide range of the "stimulus to defect" parameter. While in homogeneous random graphs pure cooperators are grouped into several clusters, in heterogeneous scale-free (SF) networks they always form a single cluster containing the most connected individuals (hubs). Our results give further insights into why cooperation in SF networks is favored.Comment: 4 pages and 4 figures. Final version as published in Physical Review Letter

    Base de Datos de Investigación en Agricultura para el Desarrollo: Resultados preliminares

    Get PDF
    Comunicación presentada en el I Congreso Investigación en Agricultura para el Desarrollo, celebrado en Madrid el 17 y 18 de octubre de 2011.La investigación en agricultura para el desarrollo en España carece de un organismo o una estructura que coordine la información y la producción científica. El único informe previo donde se analizó la actividad en este ámbito fue el "Informe sobre la Cooperación Universitaria al Desarrollo en al Ámbito Agroalimentario - El caso español", realizado por las fundaciones Triptolemos y Cultura de Paz, correspondiente al año 2006-2007.Este trabajo está financiado por el proyecto AECID CAP10-0080 y la ayuda INIA AC2010-00037.Peer Reviewe

    Paths to Synchronization on Complex Networks

    Full text link
    The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this paper, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena.Comment: Final version published in Physical Review Letter

    Synchronization in Random Geometric Graphs

    Full text link
    In this paper we study the synchronization properties of random geometric graphs. We show that the onset of synchronization takes place roughly at the same value of the order parameter that a random graph with the same size and average connectivity. However, the dependence of the order parameter with the coupling strength indicates that the fully synchronized state is more easily attained in random graphs. We next focus on the complete synchronized state and show that this state is less stable for random geometric graphs than for other kinds of complex networks. Finally, a rewiring mechanism is proposed as a way to improve the stability of the fully synchronized state as well as to lower the value of the coupling strength at which it is achieved. Our work has important implications for the synchronization of wireless networks, and should provide valuable insights for the development and deployment of more efficient and robust distributed synchronization protocols for these systems.Comment: 5 pages, 4 figure

    No-tillage permanent bed planting and controlled traffic in a maize-cotton irrigated system under Mediterranean conditions: Effects on soil compaction, crop performance and carbon sequestration

    Get PDF
    11 páginas.-- 8 figuras.-- 2 tablas.-- 66 referenciasUnder irrigated Mediterranean conditions, no-tillage permanent bed planting (PB) is a promising agriculture system for improving soil protection and for soil carbon sequestration. However, soil compaction may increase with time up to levels that reduce crop yield. The aim of this study was to evaluate the mid-term effects of PB on soil compaction, root growth, crop yield and carbon sequestration compared with conventionally tilled bed planting (CB) and with a variant of PB that had partial subsoiling (DPB) in a Typic Xerofluvents soil (Soil Survey Staff, 2010) in southern Spain. Traffic was controlled during the whole study and beds, and furrows with (F+T) and without traffic (F-T), were spatially distinguished during measurements. Comparisons were made during a crop sequence of maize (Zea mays L.)-cotton (Gossypium hirsutum L.)-maize, corresponding to years 4-6 since trial establishment. After six years, soil compaction was higher in PB than in CB, particularly under the bed (44 and 27% higher in top 0.3- and 0.6-m soil layers, respectively). Around this time, maize root density at early grain filling was 17% lower in PB than in CB in the top 0.6-m layer. In DPB, the subsoiling operation was not effective in increasing root density. Nevertheless, root density appeared to maintain above-ground growth and yield in both PB and DPB compared to CB. Furthermore, at the end of the study, more soil organic carbon was stocked in PB than in CB and the difference increased significantly with a depth down to 0.5 m (5.7 Mg ha-1 increment for the top 0.5-m soil layer). Residues tended to accumulate on furrows, and this resulted in spatial and temporal differences in superficial soil organic carbon concentration (SOC) in the permanent planting systems. In PB, SOC in the top 0.05-m layer increased with time faster in furrows than on beds, and reached higher stable values (1.67 vs. 1.09% values, respectively). In CB, tillage homogenized the soil and reduced SOC in the top 0.05-m layer (average stable value of 0.96% on average for beds and furrows).This work has been supported by the Spanish Ministry of Economy and Competitiveness (Project AGL2010-22050-CO3) and FEDER funds. P. Cid received a grant from the Junta de Ampliación de Estudios (CSIC, Spain).Peer reviewe

    Enhancing Transport Efficiency by Hybrid Routing Strategy

    Full text link
    Traffic is essential for many dynamic processes on real networks, such as internet and urban traffic systems. The transport efficiency of the traffic system can be improved by taking full advantage of the resources in the system. In this paper, we propose a dual-strategy routing model for network traffic system, to realize the plenary utility of the whole network. The packets are delivered according to different "efficient routing strategies" [Yan, et al, Phys. Rev. E 73, 046108 (2006)]. We introduce the accumulate rate of packets, {\eta} to measure the performance of traffic system in the congested phase, and propose the so-called equivalent generation rate of packet to analyze the jamming processes. From analytical and numerical results, we find that, for suitable selection of strategies, the dual- strategy system performs better than the single-strategy system in a broad region of strategy mixing ratio. The analytical solution to the jamming processes is verified by estimating the number of jammed nodes, which coincides well with the result from simulation.Comment: 6 pages, 3 figure

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    Local versus Global Knowledge in the Barabasi-Albert scale-free network model

    Full text link
    The scale-free model of Barabasi and Albert gave rise to a burst of activity in the field of complex networks. In this paper, we revisit one of the main assumptions of the model, the preferential attachment rule. We study a model in which the PA rule is applied to a neighborhood of newly created nodes and thus no global knowledge of the network is assumed. We numerically show that global properties of the BA model such as the connectivity distribution and the average shortest path length are quite robust when there is some degree of local knowledge. In contrast, other properties such as the clustering coefficient and degree-degree correlations differ and approach the values measured for real-world networks.Comment: Revtex format. Final version appeared in PR
    corecore