32,335 research outputs found

    Heuristic Classification of Physical Theories based on Quantum Correlations

    Full text link
    Taking quantum formalism as a point of reference and connection, we explore the various possibilities that arise in the construction of physical theories. Analyzing the distinct physical phenomena that each of them may describe, we introduce the different types of hidden variables theories that correspond to these physical phenomena. A hierarchical classification of the offered theories, based on the degree of correlation between dichotomic observables in bipartite systems, as quantified by a Bell type inequality, is finally proposed.Comment: 13 pages, 2 figure

    Description of the 11^{11}Li(p,d)10(p,d){^{10}}Li transfer reaction using structure overlaps from a full three-body model

    Get PDF
    Recent data on the differential angular distribution for the transfer reaction 11^{11}Li(p,d)10^{10}Li at E/A=5.7E/A=5.7 MeV in inverse kinematics are analysed within the DWBA reaction framework, using the overlap functions calculated within a three-body model of 11^{11}Li. The weight of the different 10^{10}Li configurations in the system's ground state is obtained from the structure calculations unambiguously. The effect of the 9^{9}Li spin in the calculated observables is also investigated. We find that, although all the considered models succeed in reproducing the shape of the data, the magnitude is very sensitive to the content of p1/2p_{1/2} wave in the 11^{11}Li ground-state wave function. Among the considered models, the best agreement with the data is obtained when the 11^{11}Li ground state contains a \sim31\% of p1/2p_{1/2} wave in the nn-9^9Li subsystem. Although this model takes into account explicitly the splitting of the 1+1^+ and 2+2^+ resonances due to the coupling of the p1/2p_{1/2} wave to the 3/23/2^- spin of the core, a similar degree of agreement can be achieved with a model in which the 9^{9}Li spin is ignored, provided that it contains a similar p-wave content.Comment: 8 pages, 3 figures. Final versio

    Linking structure and dynamics in (p,pn)(p,pn) reactions with Borromean nuclei: the 11^{11}Li(p,pn)10(p,pn){^{10}}Li case

    Get PDF
    One-neutron removal (p,pn)(p,pn) reactions induced by two-neutron Borromean nuclei are studied within a Transfer-to-the-Continuum (TC) reaction framework, which incorporates the three-body character of the incident nucleus. The relative energy distribution of the residual unbound two-body subsystem, which is assumed to retain information on the structure of the original three-body projectile, is computed by evaluating the transition amplitude for different neutron-core final states in the continuum. These transition amplitudes depend on the overlaps between the original three-body ground-state wave function and the two-body continuum states populated in the reaction, thus ensuring a consistent description of the incident and final nuclei. By comparing different 11^{11}Li three-body models, it is found that the 11^{11}Li(p,pn)10(p,pn){^{10}}Li relative energy spectrum is very sensitive to the position of the p1/2p_{1/2} and s1/2s_{1/2} states in 10^{10}Li and to the partial wave content of these configurations within the 11^{11}Li ground-state wave function. The possible presence of a low-lying d5/2d_{5/2} resonance is discussed. The coupling of the single particle configurations with the non-zero spin of the 9^{9}Li core, which produces a spin-spin splitting of the states, is also studied. Among the considered models, the best agreement with the available data is obtained with a 11^{11}Li model that incorporates the actual spin of the core and contains \sim31\% of p1/2p_{1/2}-wave content in the nn-9^9Li subsystem, in accord with our previous findings for the 11^{11}Li(p,d)10^{10}Li transfer reaction, and a near-threshold virtual state.Comment: 7 pages, 4 figures, submitted to PL

    Investigating the 10Li continuum through 9Li(d,p)10Li reactions

    Get PDF
    The continuum structure of the unbound system 10^{10}Li, inferred from the 9^{9}Li(d,p)10(d,p)^{10}Li transfer reaction, is reexamined. Experimental data for this reaction, measured at two different energies, are analyzed with the same reaction framework and structure models. It is shown that the seemingly different features observed in the measured excitation energy spectra can be understood as due to the different incident energy and angular range covered by the two experiments. The present results support the persistence of the N=7N=7 parity inversion beyond the neutron dripline as well as the splitting of the well-known low-lying pp-wave resonance. Furthermore, they provide indirect evidence that most of the =2\ell=2 single-particle strength, including possible d5/2d_{5/2} resonances, lies at relatively high excitations energies.Comment: accepted for publication in Physics Letters

    Determining B(E1)B(E1) distributions of weakly bound nuclei from breakup cross sections using Continuum Discretized Coupled Channels calculations. Application to 11^{11}Be

    Full text link
    A novel method to extract the B(E1)B(E1) strength of a weakly bound nucleus from experimental Coulomb dissociation data is proposed. The method makes use of continuum discretized coupled channels (CDCC) calculations, in which both nuclear and Coulomb forces are taken into account to all orders. This is a crucial advantage with respect to the standard procedure based on the Equivalent Photon Method (EPM) which does not properly take into account nuclear distortion, higher order coupling effects, or Coulomb-nuclear interference terms. The procedure is applied to the 11^{11}Be nucleus using two sets of available experimental data at different energies, for which seemingly incompatible B(E1)B(E1) have been reported using the EPM. We show that the present procedure gives consistent B(E1)B(E1) strengths, thus solving the aforementioned long-standing discrepancy between the two measurements.Comment: Submitted for publicatio

    Cosmological solutions in F(R) Horava-Lifshitz gravity

    Full text link
    At the present work, it is studied the extension of F (R) gravities to the new recently proposed theory of gravity, the so-called Horava-Lifshitz gravity, which provides a way to make the theory power counting renormalizable by breaking Lorentz invariance. It is showed that dark energy can be well explained in the frame of this extension, just in terms of gravity. It is also explored the possibility to unify inflation and late-time acceleration under the same mechanism, providing a natural explanation the accelerated expansion.Comment: 4 pages. Contribution to the Proceedings of the Spanish Relativity Meeting (ERE) 2010, Granada, Spai

    Stringent Numerical Test of the Poisson Distribution for Finite Quantum Integrable Hamiltonians

    Get PDF
    Using a new class of exactly solvable models based on the pairing interaction, we show that it is possible to construct integrable Hamiltonians with a Wigner distribution of nearest neighbor level spacings. However, these Hamiltonians involve many-body interactions and the addition of a small integrable perturbation very quickly leads the system to a Poisson distribution. Besides this exceptional cases, we show that the accumulated distribution of an ensemble of random integrable two-body pairing hamiltonians is in perfect agreement with the Poisson limit. These numerical results for quantum integrable Hamiltonians provide a further empirical confirmation to the work of the Berry and Tabor in the semiclassical limit.Comment: 5 pages, 4 figures, LaTeX (RevTeX 4) Content changed, References added Accepted for publication in PR
    corecore