102 research outputs found

    Effect of a biostimulant on bermudagrass fall color retention and spring green-up

    Full text link
    [EN] Field research was conducted in 2017-2019 on "Princess 77" bermudagrass (Cynodon dactylon (L.) Pers.) to determine whether an amino acid based biostimulant program applied in the late season (October-November) and early season (March-April) could extend fall color retention (FCR) or hasten the spring green-up (SGU), respectively. Bermudagrass was treated with the biostimulant under five different managements: non-treated; 6 times at 5 L ha(-1) weekly; 3 times at 5 L ha(-1) in a 14-day interval; 6 times at 10 L ha(-1) weekly; and 3 times at 10 L ha(-1) in a 14-day interval. Normalized difference vegetation index (NDVI) and visual ratings (turf green color and percentage of green coverage in the subplot) were determined weekly, and turf clipping dry weight for the SGU studies. At the end of the FCR studies (2017 and 2018), there was no effect of the biostimulant; although, some isolated positive effects were detected during the experiment in 2017 on bermudagrass treated weekly at 10 L ha(-1) for NDVI. However, there was a slight positive effect on SGU when this physiological process occurred slowly (year 2018) and the biostimulant was applied weekly at 10 L ha(-1) (4.4 kg N ha(-1)), compared to another performed management and warmer years (2017 and 2019).De Luca, V.; Gómez De Barreda, D. (2021). Effect of a biostimulant on bermudagrass fall color retention and spring green-up. Agronomy. 11(3):1-11. https://doi.org/10.3390/agronomy11030608S111113Anderson, J. A., Taliaferro, C. M., & Martin, D. L. (1993). Evaluating Freeze Tolerance of Bermudagrass in a Controlled Environment. HortScience, 28(9), 955. doi:10.21273/hortsci.28.9.955Gatschet, M. J., Taliaferro, C. M., Anderson, J. A., Porter, D. R., & Anderson, M. P. (1994). Cold Acclimation and Alterations in Protein Synthesis in Bermudagrass Crowns. Journal of the American Society for Horticultural Science, 119(3), 477-480. doi:10.21273/jashs.119.3.477Harlan, J. R., & Wet, J. M. J. (1969). Sources of Variation in Cynodon dactylon (L). Pers. 1. Crop Science, 9(6), 774-778. doi:10.2135/cropsci1969.0011183x000900060031xPinnix, G. D., Miller, G. L., Bowman, D. C., & Grabow, G. L. (2018). Color, Transfer, and Application Parameters of Turfgrass Colorants. Agronomy Journal, 110(1), 66-76. doi:10.2134/agronj2017.03.0164Goatley, J. M., Maddox, V. L., & Hensler, K. L. (1998). Late-season Applications of Various Nitrogen Sources Affect Color and Carbohydrate Content of `Tiflawn’ and Arizona Common Bermudagrass. HortScience, 33(4), 692-695. doi:10.21273/hortsci.33.4.692Goatley, J. M., Maddox, V. L., Lang, D. L., Elmore, R. E., & Stewart, B. R. (2005). Temporary Covers Maintain Fall Bermudagras Quality, Enhance Spring Greenup, and Increase Stem Carbohydrate Levels. HortScience, 40(1), 227-231. doi:10.21273/hortsci.40.1.227Kuti, J. O., Gans, S., Hayes, J. C., & Tucker, W. (1998). The Response of Bermudagrass (Cynodon spp.) to Microorganisms and Humate Soil Inoculations. HortScience, 33(3), 449d-449. doi:10.21273/hortsci.33.3.449dMunshaw, G. C., Ervin, E. H., Shang, C., Askew, S. D., Zhang, X., & Lemus, R. W. (2006). Influence of Late‐Season Iron, Nitrogen, and Seaweed Extract on Fall Color Retention and Cold Tolerance of Four Bermudagrass Cultivars. Crop Science, 46(1), 273-283. doi:10.2135/cropsci2005.0078Richardson, M. D. (2002). Turf Quality and Freezing Tolerance of ‘Tifway’ Bermudagrass as Affected by Late‐Season Nitrogen and Trinexapac‐Ethyl. Crop Science, 42(5), 1621-1626. doi:10.2135/cropsci2002.1621Rimi, F., Macolino, S., Richardson, M. D., Karcher, D. E., & Leinauer, B. (2013). Influence of Three Nitrogen Fertilization Schedules on Bermudagrass and Seashore Paspalum: I. Spring Green-up and Fall Color Retention. Crop Science, 53(3), 1161-1167. doi:10.2135/cropsci2012.09.0562White, R. H., & Schmidt, R. E. (1990). Fall Performance and Post-dormancy Growth of `Midiron’ Bermudagrass in Response to Nitrogen, Iron, and Benzyladenine. Journal of the American Society for Horticultural Science, 115(1), 57-61. doi:10.21273/jashs.115.1.57Barton, L., & Colmer, T. D. (2006). Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agricultural Water Management, 80(1-3), 160-175. doi:10.1016/j.agwat.2005.07.011Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. doi:10.1016/j.scienta.2015.09.021Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2014). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31(1), 1-17. doi:10.1080/01448765.2014.964649Radersma, S., & Smit, A. L. (2011). Assessing denitrification and N leaching in a field with organic amendments. NJAS: Wageningen Journal of Life Sciences, 58(1-2), 21-29. doi:10.1016/j.njas.2010.06.001Botta, A. (2013). ENHANCING PLANT TOLERANCE TO TEMPERATURE STRESS WITH AMINO ACIDS: AN APPROACH TO THEIR MODE OF ACTION. Acta Horticulturae, (1009), 29-35. doi:10.17660/actahortic.2013.1009.1Krishnan, S., Laskowski, K., Shukla, V., & Merewitz, E. B. (2013). Mitigation of Drought Stress Damage by Exogenous Application of a Non-Protein Amino Acid γ– Aminobutyric Acid on Perennial Ryegrass. Journal of the American Society for Horticultural Science, 138(5), 358-366. doi:10.21273/jashs.138.5.358Hu, L., Hu, T., Zhang, X., Pang, H., & Fu, J. (2012). Exogenous Glycine Betaine Ameliorates the Adverse Effect of Salt Stress on Perennial Ryegrass. Journal of the American Society for Horticultural Science, 137(1), 38-46. doi:10.21273/jashs.137.1.38Aamlid, T. S., Kvalbein, A., & Pettersen, T. (2017). Evaluation of an Amino‐Acid‐Based Fertilizer for Grow‐In of Creeping Bentgrass Putting Greens. Crop Science, 57(S1). doi:10.2135/cropsci2016.09.0812Radkowski, A., Radkowska, I., Bocianowski, J., Sladkovska, T., & Wolski, K. (2020). The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy, 10(11), 1656. doi:10.3390/agronomy10111656Stiegler, J. C., Richardson, M. D., Karcher, D. E., Roberts, T. L., & Norman, R. J. (2013). Foliar Absorption of Various Inorganic and Organic Nitrogen Sources by Creeping Bentgrass. Crop Science, 53(3), 1148-1152. doi:10.2135/cropsci2012.08.0511Schiavon, M., Macolino, S., Leinauer, B., & Ziliotto, U. (2015). Seasonal Changes in Carbohydrate and Protein Content of Seeded Bermudagrasses and Their Effect on Spring Green‐Up. Journal of Agronomy and Crop Science, 202(2), 151-160. doi:10.1111/jac.12135Rimi, F., Macolino, S., Leinauer, B., & Ziliotto, U. (2011). Green-up of Seeded Bermudagrass Cultivars as Influenced by Spring Scalping. HortTechnology, 21(2), 230-235. doi:10.21273/horttech.21.2.230NTEP Turfgrass Evaluation Guidelines. Natl. Turfgrass Evaluation Progr. Beltsville, MDhttp://www.ntep.org/reports/bg13/bg13_18-14f/bg13_18-14f.htmAEMEThttp://www.aemet.es/es/portadaZhang, X., Wang, K., Ervin, E. H., Waltz, C., & Murphy, T. (2011). Metabolic Changes During Cold Acclimation and Deacclimation in Five Bermudagrass Varieties. I. Proline, Total Amino Acid, Protein, and Dehydrin Expression. Crop Science, 51(2), 838-846. doi:10.2135/cropsci2010.06.0345Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02202Xu, Y., & Huang, B. (2010). Responses of Creeping Bentgrass to Trinexapac-ethyl and Biostimulants under Summer Stress. HortScience, 45(1), 125-131. doi:10.21273/hortsci.45.1.125Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.02049Poulter, R. (2014). COMPARISON OF COMPOST AND A SANDY LOAM AS TURF UNDERLAY MATERIALS ON SALT-AFFECTED PARKLAND. Acta Horticulturae, (1018), 125-131. doi:10.17660/actahortic.2014.1018.10Bell, G. E., Martin, D. L., Wiese, S. G., Dobson, D. D., Smith, M. W., Stone, M. L., & Solie, J. B. (2002). Vehicle-Mounted Optical Sensing. Crop Science, 42(1), 197. doi:10.2135/cropsci2002.0197E. Fitz Rodríguez, & C. Y. Choi. (2002). MONITORING TURFGRASS QUALITY USING MULTISPECTRAL RADIOMETRY. Transactions of the ASAE, 45(3). doi:10.13031/2013.8839Jiang, Y., & Carrow, R. N. (2005). Assessment of Narrow-band Canopy Spectral Reflectance and Turfgrass Performance under Drought Stress. HortScience, 40(1), 242-245. doi:10.21273/hortsci.40.1.242Lee, H., Bremer, D. J., Su, K., & Keeley, S. J. (2011). Relationships between Normalized Difference Vegetation Index and Visual Quality in Turfgrasses: Effects of Mowing Height. Crop Science, 51(1), 323-332. doi:10.2135/cropsci2010.05.0296Trenholm, L. E., Carrow, R. N., & Duncan, R. R. (1999). Relationship of Multispectral Radiometry Data to Qualitative Data in Turfgrass Research. Crop Science, 39(3), 763-769. doi:10.2135/cropsci1999.0011183x003900030025xPercent Winterkill Ratings of Bermudagrass Cultivars, 2013–2017. Natl. Turfgrass Evaluation Progr. Beltsville, MDhttp://www.ntep.org/data/bg13/bg13_18-12/bg1318t16b.txtMcCoy, R. M., Meyer, G. W., Rhodes, D., Murray, G. C., Sors, T. G., & Widhalm, J. R. (2020). Exploratory Study on the Foliar Incorporation and Stability of Isotopically Labeled Amino Acids Applied to Turfgrass. Agronomy, 10(3), 358. doi:10.3390/agronomy10030358Guertal, E. A. (2004). Boron Fertilization of Bentgrass. Crop Science, 44(1), 204. doi:10.2135/cropsci2004.0204Magnesium for Florida Turfgrasseshttp://edis.ifas.ufl.edu

    Comportamiento de herbicidas residuales en suelo posible contaminación de acuiferos

    Full text link
    Se ha estudiado el comportamiento ambiental en los herbicidas terbutilazina, terbacil, molinato y tiobencarb. Los resultados obtenidos indican que la terbutilazina y el terbacil se absorben fuertemente en los primeros centímetros de perfil del suelo, sin que se aprecie una lixiviación significativa pese a su alta persistencia. La mejor forma de incorporar el herbicida terbutilazina fue mediante herbigación o sobre suelo previamente humedecido, habiendose observado una lata disipación de este producto en el momento de la aplicación. Los herbicidas molinato, debido a su alta presión de vapor, se volatiliza facilmente y el tiobencarb es fuertemente fijado al suelo. Se ha utilizado dos modelos matemáticos de simulación del comportamiento y distribución de los plaguicidas en el suelo. VARLEACH y LEACHP, con el fin de evaluar su validez en la predicción del comportamiento y distribución en el suelo de la terbiutilazina y el terbacil. Ambos modelos se comportaron de forma similar, dando aceptables predicciones de la cantidad de residuos en el perfil, al compararlos con datos observados en el campo, sobre todo en el caso de terbacil. Pero esto solo ocurrió cuando los herbicidas presentaban altos coeficientes de absorción, ya que con bajos coeficientes, la distinta forma que tiene ambos modelos de simular el flujo de agua a través del suelo influye en el transporte y distribución de solutos en el perfil del suelo. Tanto por su sencillez como por las características del manejo del agua y climáticas de la Comunidad Valenciana se recomienda el uso del modelo VARLEACH.Gómez De Barreda Ferraz, D. (1999). Comportamiento de herbicidas residuales en suelo posible contaminación de acuiferos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5647Palanci

    Effect of Nitrogen-fixing Microorganisms and Amino Acid-based Biostimulants on Perennial Ryegrass

    Full text link
    [EN] Due to restrictions on pesticide and nitrogen use in high-input European agricultural systems, many of the biostimulants used in horticulture are being incorporated into turfgrass management programs-although often with little understanding. A set of experiments was carried out on perennial ryegrass (Lolium perenne) cultivated in pots in a greenhouse in 2013 and 2014 to test the effect of three biostimulants: two composed of nitrifying bacteria (B1 and B2), and the other a mixture of amino acids, polysaccharides, nitrogen, and micronutrients (B3). Apart from the biostimulant treatment, nutritional stress was incorporated into the study to demonstrate if biostimulants could temporarily replace the fertilization role and so lessen the environmental impact. Turfgrass treated with B1 resulted in an increase in quality compared with untreated turf, and the positive effect lasted 2 and 3 months in 2013 and 2014, respectively. Additionally, an extended benefit was observed when the B1 interval application was longer, even temporarily replacing fertilization when applied on stressed turfgrass. The B2 produced similar results to B1, the effect was longer, and the turf exhibited a darker color-although it caused phytotoxicity at the tip of the leaves. The B3 led to a beneficial effect on turfgrass, especially under nutritional stress; it showed a better quality, darker green color, and more growth and yield than untreated turf (despite adding less nitrogen than during either mineral fertilizer treatment). Overall results show that the tested biostimulants increase turfgrass quality even when inducing a nutritional stress.De Luca, V.; Gómez De Barreda, D.; Lidón, A.; Lull Noguera, C. (2020). Effect of Nitrogen-fixing Microorganisms and Amino Acid-based Biostimulants on Perennial Ryegrass. HortTechnology. 30(2):280-291. https://doi.org/10.21273/HORTTECH04236-19S28029130

    Forma de reducir daños causados por errores en las aplicaciones de herbicidas de postemergencia en los agrios

    Get PDF
    A veces se producen aplicaciones directas a la parte aérea de los cítricos, por defectos en los tratamientos. En el presente trabajo se pretenden extraer consecuencias del grado de fitotoxicidad alcanzado, en una aplicación deliberadamente mal efectuada, y las posibilidades de obviar los daños mediante pulverización de agua, a diversos tiempos. Los productos implicados son unas formulaciones comerciales de glifosato, glifosato +MCPA, glufosinato, fluroxipir, oxifluorfen y paraquat + diquat. Los herbicidas de contacto han producido daños muy evidentes en la primera evaluación (3 días después del tratamiento:3ddt) pero en el caso del Gramoxone plus, se reducen en la última evaluación (240 ddt). Los productos Fusta, MCPA y Roundup responden a la aplicación con agua, si se hace próxima al tratamiento. El Goal es el que menores daños produj

    Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics

    Full text link
    [EN] After harvesting rice paddy fields, rice straw is a significant problem due to uncontrolled CO2 emissions when the straw is burned. One solution to this problem is to use this rice by-product for mulching planting lines of fruit trees or vineyards with the purpose of controlling weeds and improving soil characteristics. A 3-year experiment was conducted at the Polytechnic University of Valencia (Spain) demonstration vineyard, where rice-straw mulch was installed at three rates in 2021, 24.0, 43.1, and 63.1 t ha¿1, and in 2022, 25.0, 37.5, and 50.0 t ha¿1. Weeds were mainly controlled with the highest treatment rate (50.0¿63.1 t ha¿1), as the time of the year for mulch installation is decisive for achieving different weed control rates. On average, mulch decreased soil bulk density (5.4%), and increased the soil organic carbon (24.3%) and water-soluble organic carbon (24.3%) compared to bare soil. Soil temperature changes were observed due to the mulch treatment, with soil temperature lower in bare soil than in mulched soil during the cold season, and higher during the warm season. This effect was highly dependent on the mulch application rate. Soil moisture content was also higher under the mulch treatment, showing a mulch-rate response during the four seasons of the year. The changes in the physical and biological soil properties induced a higher soil respiration rate when mulched soil was compared to bare soil. This study concludes that the use of rice straw as a mulch had positive effects on weed control and soil properties, although three factors concerning mulch management were paramount: rate, the timing of installation, and replacement rate.This research was funded by the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, grant number RTC-2017-6249-2 titled ¿Desarrollo de un nuevo insumo para la agricultura sostenible: mulch de paja de arroz con incorporación de bacterias promotoras del crecimiento de las plantas (PGPB) y mecanización integral de procesos (SMART MULCH)¿.Gómez De Barreda, D.; Bautista, I.; Castell-Zeising, V.; Lidón, A. (2023). Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics. Agronomy. 13(12):1-12. https://doi.org/10.3390/agronomy13123068112131

    La toxicidad aguda del molinato en "Aphanius iberus"

    Get PDF
    Aphanius iberus (“fartet”) es un pez de agua dulce, autóctono de zonas húmedas, como la Albufera de Valencia, considerado sensible a la contaminación. Se desconoce el grado de toxicidad de Aphanius a los plaguicidas empleados en el cultivo del arroz. El trabajo describe el procedimiento CLs,-96 h para el molinato. Se realizaron tres experimentos principales. El rango de valores está entre 12,82 y 16,43 mg/l. Estos resultados, se comparan favorablemente con el de Salmo gairdneri, que se encuentra entre 0,16-0,29 mg/l

    First Report of Dollar Spot Caused by Clarireedia jacksonii and Brown Ring Patch Caused by Waitea circinata var. circinata on Agrostis stolonifera in Spain

    Full text link
    http://apsjournals.apsnet.org/feedback/showGómez De Barreda, D.; De Luca-Fabra, V.; Ramon-Albalat, A.; León Santana, M.; Armengol Fortí, J. (2019). First Report of Dollar Spot Caused by Clarireedia jacksonii and Brown Ring Patch Caused by Waitea circinata var. circinata on Agrostis stolonifera in Spain. Plant Disease. 103(7):1771-1771. https://doi.org/10.1094/PDIS-10-18-1816-PDNS17711771103

    Penetración y degradación de la terbutilazina en el suelo. Efectos del riego de incorporación

    Get PDF
    En este experimento se trató de ver el comportamiento (degradación y lixiviación) de la terbutilazina en el suelo, bajo seis diferentes manejos de la combinación tratamiento-riego. Se observa en general, como dicho herbicida se adsorbe en los primeros cm del suelo, así como su elevada persistencia. Las mayores acumulaciones del producto al inicio del experimento se manifiestan con la herbigación, mientras que al final del mismo tiende a ser igual la acumulación de terbutilazina en los seis tipos diferentes de combinación tratamiento-riego

    Selectividad y eficacia de algunos herbicidas en viveros de planta aromática ornamental

    Get PDF
    Se han realizado unos ensayos preliminares de selectividad a los herbicidas diuron, isoxaben, metazacioro y propizamida, en las aromáticas tomillo común, tomillo aurea, lavanda, cantueso, lavandín híbrido, romero, orégano, salvia, hierbabuena y santolina. Los tratamientos se efectuaron a esquejes ya enraizados recien transplantados

    Selectividad y eficacia de algunos herbicidas en vivero de planta forestal

    Get PDF
    Se ha realizado un ensayo, con el fin de evaluar la selectividad y eficacia de los herbicidas simazina, isoxaben y tiazopir a cuatro especies forestales en condiciones de vivero. Los tratamientos se efectuaron en preemergencia de las adventicias y pre-nascencia del cultivo sobre Quercus ilex L., Pinus halepensis Mill., Pinus pinea L. y Pistacia terebinthus L. A las dosis empleadas, simazina, isoxaben y la mezcla de ambos, han resultado selectivos para todas las especies, mientras que tiazopir provocó diferentes grados de fitotoxicidad según especies y su control sobre malas hierbas no fue adecuad
    corecore