36 research outputs found

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as tt\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    Scaling of Reaction Zones in the A+B->0 Diffusion-Limited Reaction

    Full text link
    We study reaction zones in three different versions of the A+B->0 system. For a steady state formed by opposing currents of A and B particles we derive scaling behavior via renormalization group analysis. By use of a previously developed analogy, these results are extended to the time-dependent case of an initially segregated system. We also consider an initially mixed system, which forms reaction zones for dimension d<4. In this case an extension of the steady-state analogy gives scaling results characterized by new exponents.Comment: 4 pages, REVTeX 3.0 with epsf, 2 uuencoded postscript figures appended, OUTP-94-33

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Formation of Liesegang patterns: A spinodal decomposition scenario

    Full text link
    Spinodal decomposition in the presence of a moving particle source is proposed as a mechanism for the formation of Liesegang bands. This mechanism yields a sequence of band positions x_n that obeys the spacing law x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial concentration of the reagents is determined and we find that the functional form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure

    Exact Solution of Two-Species Ballistic Annihilation with General Pair-Reaction Probability

    Full text link
    The reaction process A+B>CA+B->C is modelled for ballistic reactants on an infinite line with particle velocities vA=cv_A=c and vB=cv_B=-c and initially segregated conditions, i.e. all A particles to the left and all B particles to the right of the origin. Previous, models of ballistic annihilation have particles that always react on contact, i.e. pair-reaction probability p=1p=1. The evolution of such systems are wholly determined by the initial distribution of particles and therefore do not have a stochastic dynamics. However, in this paper the generalisation is made to p<1p<1, allowing particles to pass through each other without necessarily reacting. In this way, the A and B particle domains overlap to form a fluctuating, finite-sized reaction zone where the product C is created. Fluctuations are also included in the currents of A and B particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by the `intrinsic reaction rate', seen in a single system, and the `extrinsic reaction rate', seen in an average over many systems. The intrinsic and extrinsic behaviours are examined and compared to the case of isotropically diffusing reactants.Comment: 22 pages, 2 figures, typos correcte

    Renormalization Group Study of the A+B->0 Diffusion-Limited Reaction

    Full text link
    The A+B0A + B\to 0 diffusion-limited reaction, with equal initial densities a(0)=b(0)=n0a(0) = b(0) = n_0, is studied by means of a field-theoretic renormalization group formulation of the problem. For dimension d>2d > 2 an effective theory is derived, from which the density and correlation functions can be calculated. We find the density decays in time as a,b \sim C\sqrt{\D}(Dt)^{-d/4} for d<4d < 4, with \D = n_0-C^\prime n_0^{d/2} + \dots, where CC is a universal constant, and CC^\prime is non-universal. The calculation is extended to the case of unequal diffusion constants DADBD_A \neq D_B, resulting in a new amplitude but the same exponent. For d2d \le 2 a controlled calculation is not possible, but a heuristic argument is presented that the results above give at least the leading term in an ϵ=2d\epsilon = 2-d expansion. Finally, we address reaction zones formed in the steady-state by opposing currents of AA and BB particles, and derive scaling properties.Comment: 17 pages, REVTeX, 13 compressed figures, included with epsf. Eq. (6.12) corrected, and a moderate rewriting of the introduction. Accepted for publication in J. Stat. Phy

    Diffusion-Limited Annihilation with Initially Separated Reactants

    Full text link
    A diffusion-limited annihilation process, A+B->0, with species initially separated in space is investigated. A heuristic argument suggests the form of the reaction rate in dimensions less or equal to the upper critical dimension dc=2d_c=2. Using this reaction rate we find that the width of the reaction front grows as t1/4t^{1/4} in one dimension and as t1/6(lnt)1/3t^{1/6}(\ln t)^{1/3} in two dimensions.Comment: 9 pages, Plain Te
    corecore