22 research outputs found

    A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing vaccines for the prevention of human infection by H5N1 influenza viruses is an urgent task. DNA vaccines are a novel alternative to conventional vaccines and should contribute to the prophylaxis of emerging H5N1 virus. In this study, we assessed whether a single immunization with plasmid DNA expressing H5N1 hemagglutinin (HA) could provide early protection against lethal challenge in a mouse model.</p> <p>Methods</p> <p>Mice were immunized once with HA DNA at 3, 5, 7 days before a lethal challenge. The survival rate, virus titer in the lungs and change of body weight were assayed to evaluate the protective abilities of the vaccine. To test the humoral immune response induced by HA DNA, serum samples were collected through the eye canthus of mice on various days after immunization and examined for specific antibodies by ELISA and an HI assay. Splenocytes were isolated after the immunization to determine the antigen-specific T-cell response by the ELISPOT assay.</p> <p>Results</p> <p>Challenge experiments revealed that a single immunization of H5N1 virus HA DNA is effective in early protection against lethal homologous virus. Immunological analysis showed that an antigen-specific antibody and T-cell response could be elicited in mice shortly after the immunization. The protective abilities were correlated with the amount of injected DNA and the length of time after vaccination.</p> <p>Conclusion</p> <p>A single immunization of 100 μg H5 HA DNA vaccine combined with electroporation was able to provide early protection in mice against homologous virus infection.</p

    High serum transforming growth factor beta 1 (TGFB1) level predicts better survival in breast cancer

    No full text
    The transforming growth factor beta 1 (TGFB1) is a regulatory cytokine with both tumor suppressor and tumor-promoting effects in breast cancer (BC) cell lines and tissue. Data about level of circulating TGFB1 and its prognostic significance in BC patients is conflicting. The objective of this study is to determine the clinical significance of the serum TGFB1 levels in BC patients. We enrolled 96 female patients with histopathologically diagnosed BC who did not receive chemotherapy (CT) or radiotherapy. Serum TGFB1 levels were measured by ELISA method and compared with 30 healthy controls. The mean serum TGFB1 level of BC patients was significantly higher than controls (0.08 vs. 0.04 ng/ml, p < 0.001). There was no significant difference according to known disease-related clinicopathological or laboratory parameters. Serum TGFB1 level had a significant impact on overall survival in both univariate (p = 0.01) and multivariate analysis (p = 0.013). Serum TGFB1 level is elevated in BC patients and has a favorable prognostic value. However, it has no predictive role on CT response
    corecore