9 research outputs found

    Surveillance towards preventing paediatric incidence of respiratory syncytial virus attributable respiratory tract infection in primary and secondary/tertiary healthcare settings in Merseyside, Cheshire and Bristol, UK

    Get PDF
    Respiratory syncytial virus (RSV) is a common respiratory virus, particularly affecting children, and can cause respiratory infections such as croup and bronchiolitis. The latter is a leading cause of paediatric hospitalisation within the UK. Children <3 years of age and/or with underlying health conditions are more vulnerable to severe RSV infection.There are currently limited data on the incidence of laboratory-confirmed RSV, particularly within primary care settings and outside the typical 'RSV season', which in the Northern hemisphere tends to coincide with winter months. There is also a lack of data on the health economic impact of RSV infection on families and healthcare systems.This observational surveillance study aims to collect data on the incidence of laboratory-confirmed RSV-attributable respiratory tract infection (RTI) in children aged <3 years presenting to primary, secondary or tertiary care; it also aims to estimate the health economic and quality of life impact of RSV-attributable infection in this cohort. Such data will contribute to informing public health strategies to prevent RSV-associated infection, including use of preventative medications. Parents/carers of children <3 years of age with RTI symptoms will consent for a respiratory sample (nasal swab) to be taken. Laboratory PCR testing will assess for the presence of RSV and/or other pathogens. Data will be obtained from medical records on demographics, comorbidities, severity of infection and hospitalisation outcomes. Parents will complete questionnaires on the impact of ongoing infection symptoms at day 14 and 28 following enrolment. The primary outcome is incidence of laboratory-confirmed RSV in children <3 years presenting to primary, secondary or tertiary care with RTI symptoms leading to health-seeking behaviours. Recruitment will be carried out from December 2021 to March 2023, encompassing two UK winter seasons and intervening months. Ethical approval has been granted (21/WS/0142), and study findings will be published as per International Committee of Medical Journal Editors' guidelines

    Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial

    Get PDF
    BackgroundPriming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca).MethodsCom-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020–005085–33).FindingsBetween Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77–89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2–ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1–1·8) for homologous BNT162b2, 1·5 (1·2–1·9) for ChAdOx1 nCoV-19–BNT162b2, 1·6 (1·3–2·1) for BNT162b2–ChAdOx1 nCoV-19, and 2·4 (1·7–3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17–0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19–BNT162b2 were up to 80% less reactogenic than 4-week schedules.InterpretationThese data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals

    Long-term real-world outcomes of mepolizumab and benralizumab among biologic-naïve patients with severe eosinophilic asthma: experience of three years’ therapy

    No full text
    Background Biological therapies, such as mepolizumab and benralizumab, offer treatment options for severe eosinophilic asthma (SEA), although long-term real-world data on their use are limited. Objective Evaluate the impact of benralizumab/mepolizumab treatment among biologic-naïve patients with SEA over 36 months Describe the incidence of super-response at 12 and 36 months, identifying potential predictive factors. Methods Retrospective, single-centre study of patients with SEA started on mepolizumab/benralizumab from May 2017–December 2019 who completed 36 months of therapy. Baseline demographics , co-morbidities, and medication use were described. Clinical outcomes, including maintenance oral corticosteroid (mOCS) use, annual exacerbation rate (AER), mini Asthma Quality of Life Questionnaire (mAQLQ), Asthma Control Questionnaire (ACQ-6), and eosinophil count (EC), were collected at baseline, 12 months, and 36 months. Super-response was evaluated at 12 and 36 months. Results 81 patients were included. mOCS use significantly improved from baseline (5.3mg/day) to 12 months (2.4mg/day, p<0.0001) and 36 months (0.6mg/day, p<0.0001). AER reduced from baseline (5.8) to 12 months (0.9, p<0.0001) and 36 months (1.2, p<0.0001). mAQLQ, ACQ-6, and EC significantly improved from baseline to 12 and 36 months. 29 patients demonstrated super-response at 12 months; compared to those without super-response these patients had better baseline AER (4.7 v 6.5, p=0.009), mAQLQ (3.41 v 2.54, p=0.002), and ACQ-6 (3.38 v 4.06, p=0.03). The majority maintained super-response to 36 months. Conclusion Mepolizumab and benralizumab are associated with significant improvements in OCS use, AER, and asthma control in real-world cohorts for up to 36 months, providing insight into long-term use for SEA

    Dynamic chest radiography: a state-of-the-art review.

    Get PDF
    Dynamic chest radiography (DCR) is a real-time sequential high-resolution digital X-ray imaging system of the thorax in motion over the respiratory cycle, utilising pulsed image exposure and a larger field of view than fluoroscopy coupled with a low radiation dose, where post-acquisition image processing by computer algorithm automatically characterises the motion of thoracic structures. We conducted a systematic review of the literature and found 29 relevant publications describing its use in humans including the assessment of diaphragm and chest wall motion, measurement of pulmonary ventilation and perfusion, and the assessment of airway narrowing. Work is ongoing in several other areas including assessment of diaphragmatic paralysis. We assess the findings, methodology and limitations of DCR, and we discuss the current and future roles of this promising medical imaging technology.Critical relevance statement Dynamic chest radiography provides a wealth of clinical information, but further research is required to identify its clinical niche

    Sensitivity of SARS-CoV-2 RNA polymerase chain reaction using a clinical and radiological reference standard: Clinical sensitivity of SARS-CoV-2 PCR.

    No full text
    ObjectivesDiagnostic tests for SARS-CoV-2 are important for epidemiology, clinical management, and infection control. Limitations of oro-nasopharyngeal real-time PCR sensitivity have been described based on comparisons of single tests with repeated sampling. We assessed SARS-CoV-2 PCR clinical sensitivity using a clinical and radiological reference standard.MethodsBetween March-May 2020, 2060 patients underwent thoracic imaging and SARS-CoV-2 PCR testing. Imaging was independently double- or triple-reported (if discordance) by blinded radiologists according to radiological criteria for COVID-19. We excluded asymptomatic patients and those with alternative diagnoses that could explain imaging findings. Associations with PCR-positivity were assessed with binomial logistic regression.Results901 patients had possible/probable imaging features and clinical symptoms of COVID-19 and 429 patients met the clinical and radiological reference case definition. SARS-CoV-2 PCR sensitivity was 68% (95% confidence interval 64-73), was highest 7-8 days after symptom onset (78% (68-88)) and was lower among current smokers (adjusted odds ratio 0.23 (0.12-0.42) pConclusionsIn patients with clinical and imaging features of COVID-19, PCR test sensitivity was 68%, and was lower among smokers; a finding that could explain observations of lower disease incidence and that warrants further validation. PCR tests should be interpreted considering imaging, symptom duration and smoking status

    Comprehensive review of safety in Experimental Human Pneumococcal Challenge.

    Get PDF
    IntroductionExperimental Human Pneumococcal Challenge (EHPC) involves the controlled exposure of adults to a specific antibiotic-sensitive Streptococcus pneumoniae serotype, to induce nasopharyngeal colonisation for the purpose of vaccine research. The aims are to review comprehensively the safety profile of EHPC, explore the association between pneumococcal colonisation and frequency of safety review and describe the medical intervention required to undertake such studies.MethodsA single-centre review of all EHPC studies performed 2011-2021. All recorded serious adverse events (SAE) in eligible studies are reported. An unblinded meta-analysis of collated anonymised individual patient data from eligible EHPC studies was undertaken to assess the association between experimental pneumococcal colonisation and the frequency of safety events following inoculation.ResultsIn 1416 individuals (median age 21, IQR 20-25), 1663 experimental pneumococcal inoculations were performed. No pneumococcal-related SAE have occurred. 214 safety review events were identified with 182 (12.85%) participants presenting with symptoms potentially in keeping with pneumococcal infection, predominantly in pneumococcal colonised individuals (colonised = 96/658, non-colonised = 86/1005, OR 1.81 (95% CI 1.28-2.56, P = DiscussionNo SAEs were identified directly relating to pneumococcal inoculation. Safety review for symptoms was infrequent but occurred more in experimentally colonised participants. Most symptoms were mild and resolved with conservative management. A small minority required antibiotics, notably those serotype 3 inoculated.ConclusionOutpatient human pneumococcal challenge can be conducted safely with appropriate levels of safety monitoring procedures in place

    Protocol for a phase IV double-blind randomised controlled trial to investigate the effect of the 13-valent pneumococcal conjugate vaccine and the 23-valent pneumococcal polysaccharide vaccine on pneumococcal colonisation using the experimental human pneumococcal challenge model in healthy adults (PREVENTING PNEUMO 2)

    No full text
    Introduction Despite widely available vaccinations, Streptococcus pneumoniae (SPN) remains a major cause of morbidity and mortality worldwide, causing community-acquired pneumonia, meningitis, otitis media, sinusitis and bacteraemia. Here, we summarise an ethically approved protocol for a double-blind, randomised controlled trial investigating the effect of the 13-valent pneumococcal conjugate vaccine (PCV13) and the 23-valent pneumococcal polysaccharide vaccine (PPV23) on pneumococcal nasopharyngeal colonisation acquisition, density and duration using experimental human pneumococcal challenge (EHPC).Methods and analysis Healthy adult participants aged 18–50 years will be randomised to receive PCV13, PPV23 or placebo and then undergo one or two EHPCs involving intranasal administration of SPN at 1-month post-vaccination with serotype 3 (SPN3) and 6 months with serotype 6B (SPN6B). Participants randomised to PCV13 and placebo will also be randomised to one of two clinically relevant SPN3 strains from distinct lineages within clonal complex 180, clades Ia and II, creating five study groups. Following inoculation, participants will be seen on days 2, 7, 14 and 23. During the follow-up period, we will monitor safety, colonisation status, density and duration, immune responses and antigenuria. The primary outcome of the study is comparing the rate of SPN3 acquisition between the vaccinated (PCV13 or PPV23) and unvaccinated (placebo) groups as defined by classical culture. Density and duration of colonisation, comparison of acquisition rates using molecular methods and evaluation of the above measurements for individual SPN3 clades and SPN6B form the secondary objectives. Furthermore, we will explore the immune responses associated with these vaccines, their effect on colonisation and the relationship between colonisation and urinary pneumococcal antigen detection.Ethics and dissemination The study is approved by the NHS Research and Ethics Committee (Reference: 20/NW/0097) and by the Medicines and Healthcare products Regulatory Agency (Reference: CTA 25753/0001/001–0001). Findings will be published in peer-reviewed journals.Trial registration number ISRCTN15728847, NCT04974294
    corecore