112 research outputs found

    Nurse-based restoration of degraded tropical forests with tussock grasses: Experimental support from the Andean cloud forest

    Get PDF
    10 páginas.-- 5 figuras.-- 1 tabla.-- 45 referencias.-- Supporting Information Additional Supporting Information may be found in the online versionof this article. Fig. S1. Performance of palm seedlings in each treatment. Fig. S2. Influence of light intensity on VPD. http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12311/suppinfo© 2014 British Ecological Society. The degradation of the Andean cloud forest raises strong biological conservation issues and threatens the sustainability of a crucial water resource. The idea that nurse-based restoration can accelerate the recovery of these forests is underexplored, despite its promise as a restoration technique. Recent conceptual models predict that facilitation among plants may be an important mechanism, but there is a lack of strong empirical support. We gathered experimental data to test this prediction and explore the relevance of using nurse-based forest restoration in these environments. A 20-month factorial experimental design in the Andean tropical cloud forest was established. We measured the survival and estimated the biomass production of transplanted seedlings of a keystone canopy forest species, Ceroxylon echinulatum (Arecaceae), in a deforested area in the presence/absence of herbivory, a potential nurse plant (the tussock grass Setaria sphacelata, Poaceae) and artificial shade. The joint effects of deforestation and herbivory led to the death of all seedlings, whereas most seedlings survived in the adjacent forest, which was used as the control. The presence of nurse plants led to significantly higher survival and growth of Ceroxylon seedlings throughout the experiment, regardless of herbivore presence. The nurse effects were explained by a reduction of the relative abiotic stress experienced by the seedlings outside the forest, that is, the consistently decreasing maximum vapour pressure deficit. Furthermore, nurse tussocks delayed and reduced the effects of herbivory by offering physical protection and a refuge for seedlings against detection by herbivores. However, the effects of herbivory and abiotic stress on facilitation were not additive. Synthesis and applications. Facilitation in degraded cloud forest can be intense as soon as the beneficiary plants are driven away from their physiological optimum (relative abiotic stress) and/or are confronted by herbivory. Using pre-established exotic tussock grasses as a nurse-based restoration technique in degraded cloud forest is a low-cost, non-detrimental (to biodiversity) option, especially in the absence of nurse trees and shrubs. The success of this method requires transplanting seedlings at the base of tussocks. Facilitation in degraded cloud forest can be intense as soon as the beneficiary plants are driven away from their physiological optimum (relative abiotic stress) and/or are confronted by herbivory. Using pre-established exotic tussock grasses as a nurse-based restoration technique in degraded cloud forest is a low-cost, non-detrimental (to biodiversity) option, especially in the absence of nurse trees and shrubs. The success of this method requires transplanting seedlings at the base of tussocks.We thank the people of the Inti-Llacta Reserve for their kind reception and J. Lincango, S. Cauvy-Fraunie, and C. Gully for their help with data collection. We are also grateful to P. Liancourt and two anonymous reviewers for extensive comments on the manuscript and to the LucidPapers team for English revision. This research was funded by the Ecuadorian government (ECOFONDO grant no. 019-ECO7-Inv1) and the project PALMS FP7-ENV-2007-I (www.fp7-palms.org).Peer Reviewe

    Spinal Motoneurons: Synaptic Inputs and Receptor Organization

    No full text
    This chapter is from the book Motor Neurobiology of the Spinal Cord, which provides a description of the recent conceptual and technical advances in the field. It provides a description of the new experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture. It covers topics ranging from genetics to kinematics and examines cells, tissues, or whole animals in species ranging from fish to humans that are normal, injured, or diseased. By integrating data derived from many new approaches, you\u27ll learn about how spinal cord circuits operate under a variety conditions and about new and exciting inroads being made in motor neurobiology of the spinal cord. Motor Neurobiology of the Spinal Cord elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease

    Spinal Motoneurons: Synaptic Inputs and Receptor Organization

    No full text
    This chapter is from the book Motor Neurobiology of the Spinal Cord, which provides a description of the recent conceptual and technical advances in the field. It provides a description of the new experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture. It covers topics ranging from genetics to kinematics and examines cells, tissues, or whole animals in species ranging from fish to humans that are normal, injured, or diseased. By integrating data derived from many new approaches, you\u27ll learn about how spinal cord circuits operate under a variety conditions and about new and exciting inroads being made in motor neurobiology of the spinal cord. Motor Neurobiology of the Spinal Cord elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease

    Expression of P2X7 Receptor Immunoreactivity in Distinct Subsets of Synaptic Terminals in the Ventral Horn of Rat Lumbar Spinal Cord

    No full text
    Adenosine 5′-triphosphate (ATP) may regulate neurotransmission in the CNS by activating presynaptic and/or postsynaptic P2X (P2X1–P2X7) ionotropic receptors. P2X7 purinergic receptors have been shown to modulate transmitter release at excitatory synapses in the hippocampus and have been localized in glutamatergic terminals in several CNS regions. Here, we analyze P2X7-immunoreactivity (IR) in a variety of immunohistochemically identified excitatory and inhibitory presynaptic terminals in the spinal cord ventral horn, including cholinergic C-terminals and motor axon collaterals and glutamatergic terminals that express VGLUT1- or VGLUT2-IR. Whereas there is widespread colocalization of P2X7-IR and VGLUT2-IR (∼94%), there is little colocalization (≤15%) with VGLUT1, monoaminergic or inhibitory terminals. Furthermore, although P2X7-IR is present in motor axon terminals at the neuromuscular junction (NMJ), only about 32% of the presumed motor axon terminals in the ventral horn exhibit P2X7-IR; in contrast, almost all large cholinergic C-terminals contacting motoneurons (91%) express P2X7-IR. The results suggest that distinct populations of synapses involved in spinal cord motor control circuits may be differentially regulated by the activation of P2X7 receptors

    Expression of P2X7 Receptor Immunoreactivity in Distinct Subsets of Synaptic Terminals in the Ventral Horn of Rat Lumbar Spinal Cord

    No full text
    Adenosine 5′-triphosphate (ATP) may regulate neurotransmission in the CNS by activating presynaptic and/or postsynaptic P2X (P2X1–P2X7) ionotropic receptors. P2X7 purinergic receptors have been shown to modulate transmitter release at excitatory synapses in the hippocampus and have been localized in glutamatergic terminals in several CNS regions. Here, we analyze P2X7-immunoreactivity (IR) in a variety of immunohistochemically identified excitatory and inhibitory presynaptic terminals in the spinal cord ventral horn, including cholinergic C-terminals and motor axon collaterals and glutamatergic terminals that express VGLUT1- or VGLUT2-IR. Whereas there is widespread colocalization of P2X7-IR and VGLUT2-IR (∼94%), there is little colocalization (≤15%) with VGLUT1, monoaminergic or inhibitory terminals. Furthermore, although P2X7-IR is present in motor axon terminals at the neuromuscular junction (NMJ), only about 32% of the presumed motor axon terminals in the ventral horn exhibit P2X7-IR; in contrast, almost all large cholinergic C-terminals contacting motoneurons (91%) express P2X7-IR. The results suggest that distinct populations of synapses involved in spinal cord motor control circuits may be differentially regulated by the activation of P2X7 receptors

    Expression of P2X7 Receptor Immunoreactivity in Distinct Subsets of Synaptic Terminals in the Ventral Horn of Rat Lumbar Spinal Cord

    No full text
    Adenosine 5′-triphosphate (ATP) may regulate neurotransmission in the CNS by activating presynaptic and/or postsynaptic P2X (P2X1–P2X7) ionotropic receptors. P2X7 purinergic receptors have been shown to modulate transmitter release at excitatory synapses in the hippocampus and have been localized in glutamatergic terminals in several CNS regions. Here, we analyze P2X7-immunoreactivity (IR) in a variety of immunohistochemically identified excitatory and inhibitory presynaptic terminals in the spinal cord ventral horn, including cholinergic C-terminals and motor axon collaterals and glutamatergic terminals that express VGLUT1- or VGLUT2-IR. Whereas there is widespread colocalization of P2X7-IR and VGLUT2-IR (∼94%), there is little colocalization (≤15%) with VGLUT1, monoaminergic or inhibitory terminals. Furthermore, although P2X7-IR is present in motor axon terminals at the neuromuscular junction (NMJ), only about 32% of the presumed motor axon terminals in the ventral horn exhibit P2X7-IR; in contrast, almost all large cholinergic C-terminals contacting motoneurons (91%) express P2X7-IR. The results suggest that distinct populations of synapses involved in spinal cord motor control circuits may be differentially regulated by the activation of P2X7 receptors

    The Continuing Case for the Renshaw Cell

    No full text
    Renshaw cell properties have been studied extensively for over 50 years, making them a uniquely well-defined class of spinal interneuron. Recent work has revealed novel ways to identify Renshaw cells in situ and this in turn has promoted a range of studies that have determined their ontogeny and organization of synaptic inputs in unprecedented detail. In this review we illustrate how mature Renshaw cell properties and connectivity arise through a combination of activity-dependent and genetically specified mechanisms. These new insights should aid the development of experimental strategies to manipulate Renshaw cells in spinal circuits and clarify their role in modulating motor output

    Nociceptors for the 21st Century

    No full text
    This review summarizes recent developments in the context of the neurochemical classification of nociceptors and explores the relationships between functionally and neurochemically defined subgroups. Although the complete picture is not yet available, several lines of intriguing evidence suggest that despite the complexity and diversity of nociceptor properties, a relatively simple neurochemical classification fits well with several recently identified molecular characteristics
    • …
    corecore