39 research outputs found

    Emodin inhibits proliferation and invasion, and induces apoptosis in human esophageal cancer cell line ECA109

    Get PDF
    Purpose: To determine the anticancer effects of emodin in human esophageal carcinoma cell line ECA109.Methods: Cell viability was determined by MTT assay, while cell invasion and apoptosis were measured by Transwell assay and flow cytometry, respectively. Expression levels of MMP-2, Bax, Bcl-2 and caspase-3 proteins were determined by Western blot.Results: Flow cytometry data showed that the proportion of apoptotic cells was increased by emodin treatment. Apoptotic rates produced by 10, 20 and 50 μM emodin were 13.9 ± 3.8, 25.6 ± 6.2 and 39.8 ± 7.7 %, respectively. Transwell assay data revealed concentration-dependent suppression of the invasive rate of ECA109 cells by emodin (10, 20 and 50 μM) was 30.0 ± 4.5, 56.0 ± 6.8 and 69.0 ± 8.1 %, respectively. Furthermore, emodin treatment inhibited expressions of MMP-2 and Bcl-2 proteins, but induced the expression of Bax and caspase-3, when compared with control groups.Conclusion: These results suggest that emodin inhibits cell proliferation and cell invasion, but induces cell apoptosis in human esophageal cancer cell line ECA109. Thus, emodin is a potential candidate for development of an effective chemotherapeutic agent against esophageal cancer.Keywords: Emodin, Esophageal Cancer, Apoptosis, Cell invasion, Bax, Caspase-

    Cloning and expression of virus-like particles (VLPs) in microalgal expression systems

    No full text
    Virus-like particles (VLPs) can be constructed from self-assembled viral capsid proteins. While preserving structural and antigenic similarities to the authentic native viruses, they are non-infectious and non-replicating molecules due to the lack of genetic material. Additionally, the highly repetitive and organised display of epitopes on the VLP surface promotes strong immunogenic responses. Some VLPs can also serve as particulate carriers with linked heterologous epitopes, forming so-called chimeric VLPs. Hepatitis B core antigen (HBcAg) VLPs are one of the most promising and well-documented particulate carriers for heterologous epitope presentation. The formation of HBcAg VLPs has previously been demonstrated in various prokaryotic and eukaryotic hosts. However, the development of chimeric HBcAg VLP-based vaccine candidates will require an inexpensive, safe and robust production platform. The transgenic green alga Chlamydomonas reinhardtii is examined here as an alternative expression system due to its ability to fold complex protein structures, relatively low production costs and the absence of viral toxins or human pathogens giving it GRAS (Generally Recognised as Safe) status. In this work, the codon-optimised nucleotide sequence of the truncated HBcAg monomer (HBc150_HA) was inserted into the C. reinhardtii chloroplast genome and HBc150_HA expression was confirmed by western blot analysis. Subsequently, both bioprocess and genetic engineering strategies were assessed to boost HBc150_HA production. These resulted in a 26-fold increase in HBc150_HA production which accumulated up to 2.34% (w/w) of total soluble protein (TSP) mainly as consequence of using a stronger 16S ribosomal RNA (rRNA) promoter. Based on the densitometric analysis, the yield of HBc150_HA (4.9 mg per g dry cell weight (DCW)) was almost four-fold higher than the yeast-derived tandem-core HBcAg (1.3 mg per g DCW) in which two monomers were genetically fused. Despite low abundancy, isometric particles of 25-30 nm in diameter and with a morphology typical of HBcAg VLPs were observed in transmission electron microscopy (TEM) after partial purification by either sucrose gradient ultracentrifugation or size exclusion chromatography (SEC). The results of immunogold labelling further confirmed the presence of capsid assembly in the HBc150_HA-expressing microalgal samples. This is the first study to show that HBcAg VLPs can be synthesized and correctly assembled in microalgal chloroplasts. It therefore enables further exploration of the potential of C. reinhardtii as a versatile platform for low-cost production of recombinant therapeutic proteins

    Comprehensive investigation on misalignment tolerance of inductive power transfer systems

    No full text
    Inductive power transfer (IPT) technology is gaining popularity for wireless charging applications of future electric charging for its contactless power supply. The square and circular planar spiral coils are most widely used in wireless power charge due to its simple structure. This paper gives analyses of comparing these two geometry windings in detail. As for an inductive power transfer system, coupling structures, such as line spacing and magnetic core structure, are of paramount importance, because of their significant impact on power transfer efficiency and voltage stability. By analyzing the characteristics of magnetic field distribution of the coupler, influences of coil shape, size, line spacing and core structures on coupling coefficient and coupling coefficient retaining ratio (CCRR) are firstly investigated. Misalignment tolerance under different coupler structures is then conducted, comprehensive optimization schemes of misalignment tolerance improvement are proposed. Results show that for the coupling coefficient and coupling coefficient retaining ratio, the optimal line spacing and core structures are highly dependent on the coil shape, size and air gap. A 3-kW IPT system was also built and experimental validations on original and optimized structures are performed. And the better misalignment tolerance was achieved with the optimal line spacing, transmitting coil and ferrite core structure

    Pharmacodynamic evaluation of the XOR inhibitor WN1703 in a model of chronic hyperuricemia in rats induced by yeast extract combined with potassium oxonate

    No full text
    Hyperuricemia is a common disease caused by a disorder of purine metabolism, which often causes hyperlipidemia and other metabolic diseases. WN1703 was demonstrated to be an effective xanthine oxidoreductase (XOR) inhibitor in our previous study. Here, we evaluated the pharmacodynamic effect of WN1703 on rats suffering from chronic hyperuricemia accompanied by disorders of lipid metabolism. We discovered that WN1703 was an efficacious uric acid (UA)-lowering compound. Simultaneously, it had effect on relieving renal injury, regulating lipid metabolism by reducing levels of triglycerides and low-density lipoprotein-cholesterol, increasing levels of high-density lipoprotein-cholesterol, and improving renal and liver lesions. WN1703 also exhibited anti-inflammatory and antioxidant activity by alleviating the increasing trend of levels of tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1, and malondialdehyde, and improving the activity of superoxide dismutase and glutathione peroxidase. WN1703 appeared to be more effective than febuxostat in inhibiting XOR and had higher antioxidant activity. In general, the pharmacologic action of WN1703 showed a clear dose–effect relationship

    Multipole Theory Analysis of Cutoff Wavenumbers of Waveguides Partially Filled with Dielectric

    No full text
    A new approach, the multipole theory (MT) method, is presented for the computation of cutoff wavenumbers of waveguides partially filled with dielectric. The MT formulation of the eigenvalue problem of an inhomogeneous waveguide is derived. Representative computational examples, including dielectric-rod-loaded rectangular and double-ridged waveguides, are given to validate the theory, and to demonstrate the degree of its efficienc

    Serum iron fluctuations link ferroptosis process with mortality and prognosis of acute pancreatitis

    No full text
    Summary: Recently, the existence of ferroptosis has been confirmed in chronic pancreatitis. However, its role in acute pancreatitis (AP) process, especially in critical status, has not yet been mentioned. To verify this hypothesis, we included 873 AP patients (training set) and 1,188 NAFLD patients (internal validation set) selected from MIMIC-III (Medical Information Mark for Intensive Care) database and 218 AP patients (external validation set) in Linshui County People’s Hospital ICU data. We analyzed the correlation between mortality and ferroptosis associating factors (such as serum iron, ALP, lactate, etc.) in them through regression analysis. In addition, to test the significance of these factors, the nomogram, AUC, and DCA analysis were applied. The results showed that serum iron, IBC, ALP, and lactate (p < 0.05) were independent factors for the mortality and prognosis of these patients. These correlations suggest ferroptosis and follow-up cell programmed death may own an important clinical interference significance among this population

    Advanced microflow manipulation strategy in paper-based microfluidics towards smart analytical chemistry: A concise review

    No full text
    Microfluidics has emerged as a rapidly growing field in recent years, offering numerous advantages over traditional methods for various applications such as biomedical analysis, environmental monitoring, and chemical synthesis. Among the many areas of microfluidics research, the manipulation of fluids plays a crucial role. In this review, the focus will be on recent advances in fluid manipulation techniques such as mixing, dilution, separation, accumulation, flow delay, and flow accelerations. Looking to the future, microfluidics research will continue to explore new ways to manipulate fluids in microscale environments. Challenges include the need for better integration of different manipulation techniques, such as combining mixing and separation techniques, and the development of more complex microfluidic systems. Additionally, advancements in material science will continue to play a critical role in improving the functionality of microfluidic devices. Despite these challenges, the potential for microfluidics to revolutionize various fields remains high, and ongoing research in this area is likely to continue to yield exciting new discoveries and innovations

    One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns

    No full text
    The rapid growth of the demand for carbon nanotubes (CNTs) has greatly promoted their large-scale synthesis and development. However, the continuous production of CNT fibers by floating catalyst chemical vapor deposition (FCCVD) requires a large amount of non-renewable carbon sources. Here, the continuous production of highly graphitized CNT yarns from biomass tannic acid (TA) is reported. The chelation of TA and catalyst promotes the rapid cracking of biomass into carbon source gas, and the pyrolysis cracking produces the reducing gas, which solves the problems of the continuous production of CNT yarns using biomass. Through simple twisting, the mechanical strength of CNT yarn can reach 886 ± 46 MPa, and the electrical conductivity and graphitization (IG/ID) can reach 2 × 105 S m−1 and 6.3, respectively. This work presents a promising solution for the continuous preparation of CNT yarns based on green raw material
    corecore