63 research outputs found

    Model-based Optimal Control of Variable Air Volume Terminal Box

    Get PDF
    In the U.S. A Variable Air Volume (VAV) system is one of most commonly used air system for multiple-zone commercial buildings due to its capability to meet the varying heating and cooling loads of different building thermal zones. One of key component of VAV system is the terminal VAV box. There are an air damper and a reheat coil in the box. How to effectively and efficiently control the VAV box plays a significant role to reduce energy consumption and maintain acceptable indoor environment in buildings. Currently, there are two control logics used for controlling VAV box, namely, single maximum and dual maximum control logics. The single maximum logic is the most common, where the room temperature setpoint is maintained by only adjusting the reheat coil valve position in the heating model. The damper position is kept as the minimal to satisfy the ventilation requirement only. On the other hand, the more advanced dual maximum control logic realizes the room air temperature control by adjusting both damper position and reheat coil valve position in the heating model. For the cooling model, both control logics have the same action to maintain room air temperature setpoint through adjusting the damper position. Â In this study, a model-based optimal control is explored to minimize the energy consumption of the VAV box with a hot water reheat coil. Data driven approach based on an Autoregressive exogenous (ARX) model is investigated to represent dynamics of the room thermal response. The similar data-driven approach is used to develop an energy consumption model of the VAV box. Measured data for the VAV box from a real building is used to train and test data-driven model. Such data includes room air temperature, outdoor air temperature, supply air temperature, supply air flow rate, damper position, reheat coil valve position and VAV box energy consumption. A platform of AMPL (A Modeling Language for Mathematical Programming) is used to for mathematical modeling and links to different optimization solvers. Â In addition, uncertainty analysis and sensitivity analysis are conducted to help understand the model behaviors and performance. In this study, the Monte Carlo sampling method is applied to generate samples for model inputs including supply air temperature, outdoor conditions, etc. A quantified sensitivity index of Sobol is calculated to indicate the impact level from different inputs or disturbances

    Investigation on A Ground Source Heat Pump System Integrated With Renewable Sources

    Get PDF
    Buildings consumed 40% of the energy and represented 40% of the carbon emissions in the United States. This is more than any other sector of the U.S. economy, including transportation and industry. About 24% of all energy used in the nation is for space heating, cooling and water heating in buildings. Enhancing building efficiency represents one of the easiest, most immediate and most cost effective ways to reduce carbon emissions. One of energy efficient and environment friendly technologies with potentials for savings is Ground Source Heat Pump (GSHP) system. On the other hand, solar energy is considered as an unlimited and an environment friendly energy source, which has been widely used for solar thermal and solar power applications. This paper presents a laboratory test facility for a solar powered ground source heat pump system. The ultimate technical goal is to apply the solar powered ground source heat pump into a net-zero energy building, where all the electricity consumption will be covered by an integrated on-site solar Photovoltaics (PV) panels and battery system. The added-on benefits from this solar powered GSHP include but not limited to: 1) help further reduce electricity peak demand and 2) help further reduce greenhouse emissions. In this test rig, a ¾ - ton water-to-air GSHP is connected to two 60-feet deep wells. A group of solar PV panels of 1.12KW is connected to a battery bank, which is used to power the GSHP and a 0.27KW DC powered well pump. During the daytime, solar PV panels convert solar photons into electrical energy which will be stored into the battery bank. Whenever the GSHP system is on demand, the battery bank will provide the power. This test rig also has a comprehensive performance monitoring and data acquisition system. Well groundwater temperatures, refrigerant temperatures, air temperatures, water flow rates, etc. are all real-time monitored, trended and stored. In addition, an on-site weather station is installed to measure outside air temperature, relative humidity, wind speed and direction, and solar radiation. The details for the design and layout of this solar powered GSHP, together with the monitoring and data acquisition system will be introduced in this paper. In addition, the preliminary data collected from a testing of a cooling mode operation will be presented to illustrate the benefits of the proposed system. Finally, the feasibility of the application of the system will be discussed in the paper

    A protocol of Chinese expert consensuses for the management of health risk in the general public

    Get PDF
    IntroductionNon-communicable diseases (NCDs) represent the leading cause of mortality and disability worldwide. Robust evidence has demonstrated that modifiable lifestyle factors such as unhealthy diet, smoking, alcohol consumption and physical inactivity are the primary causes of NCDs. Although a series of guidelines for the management of NCDs have been published in China, these guidelines mainly focus on clinical practice targeting clinicians rather than the general population, and the evidence for NCD prevention based on modifiable lifestyle factors has been disorganized. Therefore, comprehensive and evidence-based guidance for the risk management of major NCDs for the general Chinese population is urgently needed. To achieve this overarching aim, we plan to develop a series of expert consensuses covering 15 major NCDs on health risk management for the general Chinese population. The objectives of these consensuses are (1) to identify and recommend suitable risk assessment methods for the Chinese population; and (2) to make recommendations for the prevention of major NCDs by integrating the current best evidence and experts’ opinions.Methods and analysisFor each expert consensus, we will establish a consensus working group comprising 40–50 members. Consensus questions will be formulated by integrating literature reviews, expert opinions, and an online survey. Systematic reviews will be considered as the primary evidence sources. We will conduct new systematic reviews if there are no eligible systematic reviews, the methodological quality is low, or the existing systematic reviews have been published for more than 3 years. We will evaluate the quality of evidence and make recommendations according to the GRADE approach. The consensuses will be reported according to the Reporting Items for Practice Guidelines in Healthcare (RIGHT)

    Study on deformation law and breaking span of main roof of isolated working face based on thin plate theory

    No full text
    To study the deformation and fracture laws of the main roof in three-side annular island working face, the MZ201 working face of a coal mine in Henan Province was considered as the research background, and a main roof breaking mechanics model was constructed by using the small deflection bending theory of elastic thin plate. The fracture mechanics features of the main roof of the island working face were analyzed, and the initial pressure and periodic pressure breaking span of the basic roof were obtained. The results show that the deformation of the main roof is small during the initial pressure, and the maximum roof subsidence is 360 mm in the middle rear area of the goaf. During periodic pressure, the deformation of the main roof is large, especially in the center of the roof, and the maximum roof subsidence is 807 mm. The tensile failure of rock strata first occurs from the middle of the two long sides at the first breaking. During periodic breaking, the rock strata starts to break from the center of the rock strata bottom, develops continuously along the dip direction, forks at the near end of the short side, which contributes to the “X” type breaking. Based on the tensile stress fracture criterion, the initial breaking span and periodic breaking span of main roof were obtained with 49.3 m and 27.9 m, respectively, which is closed to measured results on site

    Distribution, Genesis, and Human Health Risks of Groundwater Heavy Metals Impacted by the Typical Setting of Songnen Plain of NE China

    No full text
    Heavy metals pollution in groundwater and the resulting health risks have always been an environmental research hotspot. However, the available information regarding this topic and associated methods is still limited. This study collected 98 groundwater samples from a typical agricultural area of Songnen Plain in different seasons. The pollution status and sources of ten heavy metals (As, Ba, Cd, Co, Cr (VI), Cu, Fe, Mn, Ni, Pb, and Zn) were then analyzed and compared. In addition, the human health risks assessment (HHRA) model was used to calculate human health risks caused by heavy metals in groundwater. The results revealed that heavy metals were mainly distributed in the northwest of the study area and along the upper reaches of the Lalin river and that the concentrations of heavy metals were higher during the wet season than the dry season. Industrial and agricultural activities and natural leaching are the main sources, and each kind of heavy metal may have different sources. Fe and Mn are the primary pollutants, mainly caused by the native environment and agricultural activities. The exceeding standard rates are 71.74% and 61.54%, respectively based on the Class III of Quality Standard for Groundwater of China (GB/T 14848-2017). The maximum exceeding multiple are 91.45 and 32.05, respectively. The health risks of heavy metals borne by different groups of people were as follows: child > elder > young > adult. Carcinogenic heavy metals contribute to the main risks, and the largest risks sources are Cr and As. Therefore, the government should appropriately restrict the use of pesticides and fertilizers, strictly manage the discharge of enterprises, and control man-made heavy metals from the source. In addition, centralized water supply and treatment facilities shall be established to prevent the harm of native heavy metals

    Continuity Enhancement Method for Real-Time PPP Based on Zero-Baseline Constraint of Multi-Receiver

    No full text
    Continuity is one of the metrics that characterize the required navigation performance of global navigation satellite system (GNSS)-based applications. Data outage due to receiver failure is one of the reasons for continuity loss. Although a multi-receiver configuration can maintain position solutions in case a receiver has data outage, the initialization of the receiver will also cause continuous high-precision positioning performance loss. To maintain continuous high-precision positioning performance of real-time precise point positioning (RT-PPP), we proposed a continuity enhancement method for RT-PPP based on zero-baseline constraint of multi-receiver. On the one hand, the mean time to repair (MTTR) of the multi-receiver configuration is improved to maintain continuous position solutions. On the other hand, the zero-baseline constraint of multi-receiver including between-satellite single-differenced (BSSD) ambiguities, zenith troposphere wet delay (ZWD), and their suitable stochastic models are constructed to achieve instantaneous initialization of back-up receiver. Through static and kinematic experiments based on real data, the effectiveness and robustness of proposed method are evaluated comprehensively. The experiment results show that the relationship including BSSD ambiguities and ZWD between receivers can be determined reliably based on zero-baseline constraint, and the instantaneous initialization can be achieved without high-precision positioning continuity loss in the multi-receiver RT-PPP processing

    The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions

    No full text
    With the full operation of the global BeiDou navigation satellite system (BDS-3), positioning performance can be further enhanced by BDS-3 combined with the regional BeiDou navigation satellite system (BDS-2). However, due to satellite signals being out of lock and the limited visibility of satellites, the traditional multi-frequency BDS-2/3 precise point positioning (PPP) model is unable to maintain great positioning performance under urban environmental conditions. In this study, a mixed multi-frequency undifferenced and uncombined (UDUC) BDS-2/3 PPP model is presented to improve the positioning performance under urban environmental conditions by making full use of B1I, B1C, B2I, B2a, and B3I signals from all visible BDS satellites. In this model, BDS satellites with single-, dual-, triple- and quad-frequency observations all can participate in PPP. The static and kinematic experiments were carried out using the mixed multi-frequency UDUC BDS-2/3 PPP model to fully assess the positioning performance under urban environmental conditions with comparisons to the multi-frequency model. The static experiments indicated that the mixed multi-frequency UDUC BDS-2/3 PPP could continuously achieve decimeter-level positioning accuracy at a cut-off elevation angle of 40°, but part of the BDS-3 PPP would lose resolution due to limited visible satellites. Furthermore, the initial kinematic vehicle experiment showed that mixed multi-frequency UDUC BDS-2/3 PPP had better satellite geometry and more observation redundancy than the traditional multi-frequency model. Compared with the traditional multi-frequency BDS-2/3 model, the positioning accuracy of the mixed multi-frequency model was improved by 51.6, 35.5, and 39.1%, respectively, in east, north, and up directions. The convergence time was shortened by 40%

    Surfactant Enhanced Electroremediation of Phenanthrene

    No full text
    Abstract Removal of hydrophobic organic contaminants (HOCs) from soil of low permeability by electroremediation was investigated by using phenanthrene and kaolinite as a model system. Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene. The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of ζ-potential of kaolinite were examined, respectively. The effects of electric field strength indicated by electric current on the electroremediation behavior, including the pH of purging solution, the conductivity, phenanthrene concentration and flow rate of effluent, were experimentally investigated, respectively. In case of an electric field of 25mA applied for 72 hours, over 90% of phenanthrene was removed from 424 g (dry weight) of kaolinite at an energy consumption of 0.148 KWh. The experimental results described in present study shows that the addition of surfactant into purging solution greatly enhances the removal of HOCs by electroremediation
    corecore