115 research outputs found

    Human-imperceptible, Machine-recognizable Images

    Full text link
    Massive human-related data is collected to train neural networks for computer vision tasks. A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data. To reconcile this conflict, this paper proposes an efficient privacy-preserving learning paradigm, where images are first encrypted to become ``human-imperceptible, machine-recognizable'' via one of the two encryption strategies: (1) random shuffling to a set of equally-sized patches and (2) mixing-up sub-patches of the images. Then, minimal adaptations are made to vision transformer to enable it to learn on the encrypted images for vision tasks, including image classification and object detection. Extensive experiments on ImageNet and COCO show that the proposed paradigm achieves comparable accuracy with the competitive methods. Decrypting the encrypted images requires solving an NP-hard jigsaw puzzle or an ill-posed inverse problem, which is empirically shown intractable to be recovered by various attackers, including the powerful vision transformer-based attacker. We thus show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information. The code is available at \url{https://github.com/FushengHao/PrivacyPreservingML.

    catena-Poly[[[triaqua­copper(II)]-μ-2,2′-bipyridine-3,3′-dicarboxyl­ato-κ3 N,N′:O] monohydrate]

    Get PDF
    The title compound, {[Cu(C12H6N2O4)(H2O)3]·H2O}n, was synthesized under hydro­thermal conditions. The Cu2+ ion is six-coordinated by three water O atoms, and two N atoms and one O atom of the 2,2′-bipyridine-3,3′-dicarboxyl­ate bridging ligand in a sligthly distorted octa­hedral environment. The 2,2-bipyridine-3,3′-dicarboxyl­ate bridges link the Cu2+ ions into chains along the b-axis direction. These chains are further linked by O—H⋯O hydrogen bonds involving the water solvent mol­ecules, forming a three-dimensional framework

    Tris(2,2′-bi-1H-imidazole-κ2 N 3,N 3′)cobalt(II) hydrogen phosphate

    Get PDF
    The title compound, [Co(C6H6N4)3]HPO4, was synthesized under hydro­thermal conditions. In the cation, the CoII atom is octa­hedrally coordinated by six N atoms from three 2,2′-bi-1H-imidazole ligands [Co—N bond lengths are in the range 2.084 (5)–2.133 (6) Å]. Inter­molecular N—H⋯O hydrogen bonds form an extensive hydrogen-bonding network, which links cations and anions into a three-dimensional crystal structure

    Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

    Get PDF
    Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual’s limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual’s activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data

    Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs.

    Get PDF
    The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice

    Structures and magnetic properties of iron silicide from adaptive genetic algorithm and first-principles calculations

    Get PDF
    We performed a systematic search for low-energy structures of binary iron silicide over a wide range of compositions using the crystal structure prediction method based on adaptive genetic algorithm. 36 structures with formation energies within 50 meV/atom (11 of them are within 20 meV) above the convex hull formed by experimentally known stable structures are predicted. Magnetic properties of these low-energy structures are investigated. Some of these structures can be promising candidates for rare-earth-free permanent magnet
    • …
    corecore