147 research outputs found

    Ceramide turnover (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates 3-ketosphinganine, which is reduced to dihydrosphingosine (dihydrosphingosine). N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates

    Ceramide turnover in GtoPdb v.2021.3

    Get PDF
    Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates 3-ketosphinganine, which is reduced to dihydrosphingosine. N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates

    Ceramide turnover in GtoPdb v.2023.1

    Get PDF
    Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates 3-ketosphinganine, which is reduced to dihydrosphingosine. N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates

    Ceramide turnover (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates 3-ketosphinganine, which is reduced to sphinganine (dihydrosphingosine). N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates

    Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum

    Get PDF
    Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as “finely-tuned molecular machines.” We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence

    Control of the rate of evaporation in protein crystallization by the ‘microbatch under oil’ method

    Get PDF
    A procedure is presented for controlling the rate of evaporation during ‘microbatch under oil’ protein crystallization

    Identification of Modifier Genes in a Mouse Model of Gaucher Disease.

    Get PDF
    Diseases caused by single-gene mutations can display substantial phenotypic variability, which may be due to genetic, environmental, or epigenetic modifiers. Here, we induce Gaucher disease (GD), a rare inherited metabolic disorder, by injecting 15 inbred mouse strains with a low dose of a chemical inhibitor of acid β-glucosidase, the enzyme defective in GD. Different mouse strains exhibit widely different lifespans, which is unrelated to levels of acid β-glucosidase's substrate accumulation. Genome-wide association reveals a number of candidate risk loci, including a marker within Grin2b, which in combination with another marker allows us to predict the lifespan of additional mouse strains. An antagonist of the NMDA receptor (encoded by Grin2b) significantly increases the lifespan of GD mice that would otherwise have lived for a short time. Our data identify putative modifier genes that may be involved in determining GD severity, which might help elucidate phenotypic variability between patients with similar GD mutations.Children’s Gaucher Research Fund, Pfizer, Minerva Foundation, National Institutes of Health (Grant ID: GM076217), Medical Research Council (Grant ID: MR/K015338/1), Cambridge Biomedical Research Centre of National Institute for Health Research, UK Gaucher Association, Rosetrees Trust, Weizmann Institute of ScienceThis is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.07.08

    Large-scale proteomics analysis of five brain regions from Parkinson’s disease patients with a GBA1 mutation

    Get PDF
    Despite being the second most common neurodegenerative disorder, little is known about Parkinson's disease (PD) pathogenesis. A number of genetic factors predispose towards PD, among them mutations in GBA1, which encodes the lysosomal enzyme acid-β-glucosidase. We now perform non-targeted, mass spectrometry based quantitative proteomics on five brain regions from PD patients with a GBA1 mutation (PD-GBA) and compare to age- and sex-matched idiopathic PD patients (IPD) and controls. Two proteins were differentially-expressed in all five brain regions whereas significant differences were detected between the brain regions, with changes consistent with loss of dopaminergic signaling in the substantia nigra, and activation of a number of pathways in the cingulate gyrus, including ceramide synthesis. Mitochondrial oxidative phosphorylation was inactivated in PD samples in most brain regions and to a larger extent in PD-GBA. This study provides a comprehensive large-scale proteomics dataset for the study of PD-GBA
    • …
    corecore