71 research outputs found

    Diving behavior in Anopheles gambiae (Diptera: Culicidae): avoidance of a predacious wolf spider (Araneae: Lycosidae) in relation to life stage and water depth.

    Get PDF
    It has been suggested that mosquito larvae and pupae dive to avoid predators. We tested this predator-avoidance hypothesis by using immature Anopheles gambiae Giles (Diptera: Culicidae) and the wolf spider Pardosa messingerae (Stand) (Araneae: Lycosidae). Because previous studies have suggested that wolf spiders are poor predators of immature mosquitoes, we first examined the predatory ability of the wolf spider and found that the spider was effective at capturing all stages of larvae and pupae. The mortality from experimental cups containing deep water increased with the age of mosquitoes, with the exception of pupae. In contrast, this trend was not observed in shallow water. In particular, mortality was significantly lower in deep water during the second instar. During the third instar, the opposite trend was observed. When the effect of cannibalism was excluded by subtracting the number of missing mosquitoes for the treatment without spiders from those with spiders, the cannibalism corrected mortality was significantly lower in deep water during the second instar. The duration of diving by larvae and pupae decreased with age. With the exception of first instar, diving frequency also decreased with age. We postulate that this diving behavior allows An. gambiae to escape predation by wolf spiders, which supports the predator-avoidance hypothesis. This study indicates some important implications for vector control

    Lack of kdr mutations in a population of Asian tiger mosquitoes from Costa Rica

    Get PDF
    Use of insecticides has led to the fixation of alleles for single amino acid changes in the voltage gated sodium channel (VGSC) associated with knockdown resistance (kdr) in insects of agricultural or medical importance. In this short note, we study allele frequencies of 5 kdr loci, S989, I1011, L1014, V1016 and F1534 in a population of the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera Culicidae), collected in the only identified location with persistent infestations in Costa Rica. We found no mutant alleles associated with kdr resistance, and a synonymous point mutation was observed at loci V1016. Our results likely reflect the recent invasion of the Asian tiger mosquito in Costa Rica, and also provide a baseline for future studies looking at the global distribution of kdr mutations in this important vector of dengue and chikungunya viruses

    Sleeping arrangement and house structure affect bed net use in villages along Lake Victoria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although insecticide-treated bed nets are effective tools, use often does not follow ownership. House structure and space arrangements may make the attempt to use bed nets difficult, especially for school age children. The objectives of this study were to explore whether an individual's sleeping arrangements and house structure affect bed net use in villages along Lake Victoria in western Kenya.</p> <p>Methods</p> <p>Sleeping arrangements of residents were directly observed for use of a bed net, use of a bed, and location. House size, number and types of rooms, bed availability, and residents' ages were estimated. The family heads and mothers were asked about the reason for not using bed nets. Individual bed net use was examined against age and sleeping arrangement. Net use at the household level was examined against four variables: bed availability, bed net availability, house size, and number of rooms.</p> <p>Results</p> <p>Bed net use by children between five and 15 years of age was lower than that among the other age classes. However, age was dropped from the final model, and sleeping arrangement was significantly associated with net use. Net use was significantly associated with bed availability, number of rooms and their interaction.</p> <p>Conclusion</p> <p>Net use was affected by sleeping arrangement and availability of suitable locations for hanging nets, in addition to net availability. Most residents had likely not realized that sleeping arrangement was a factor in net use. The ease of hanging a net is particularly important for children.</p

    Long-Lasting Insecticidal Nets Incorporating Piperonyl Butoxide Reduce the Risk of Malaria in Children in Western Kenya: A Cluster Randomized Controlled Trial

    Get PDF
    Malaria vectors have acquired an enzyme that metabolizes pyrethroids. To tackle this problem, we evaluated long-lasting insecticidal nets incorporating piperonyl butoxide (PBO-LLINs) with a community-based cluster randomized control trial in western Kenya. The primary endpoints were anopheline density and Plasmodium falciparum polymerase chain reaction (PCR)-positive prevalence (PCRpfPR) of children aged 7 months to 10 years. Four clusters were randomly selected for each of the treatment and control arms (eight clusters in total) from 12 clusters, and PBO-LLINs and standard LLINs were distributed in February 2011 to 982 and 1,028 houses for treatment and control arms, respectively. Entomological surveys targeted 20 houses in each cluster, and epidemiological surveys targeted 150 children. Cluster-level permutation tests evaluated the effectiveness using the fitted values from individual level regression models adjusted for baseline. Bootstrapping estimated 95% confidence intervals (CIs). The medians of anophelines per house were 1.4 (interquartile range [IQR]: 2.3) and 3.4 (IQR: 3.7) in the intervention and control arms after 3 months, and 0.4 (IQR: 0.2) and 1.6 (IQR: 0.5) after 10 months, respectively. The differences were –2.5 (95% CI: –6.4 to –0.6) and –1.3 (95% CI: –2.0 to –0.7), respectively. The datasets of 861 and 775 children were analyzed in two epidemiological surveys. The median PCRpfPRs were 25% (IQR: 11%) in the intervention arm and 52% (IQR: 11%) in the control arm after 5 months and 33% (IQR: 11%) and 45% (IQR: 5%) after 12 months. The PCRpfPR ratios were 0.67 (95% CI: 0.38, 0.91) and 0.74 (95% CI: 0.53, 0.90), respectively. We confirmed the superiority of PBO-LLINs

    A preliminary study on designing a cluster randomized control trial of two new mosquito nets to prevent malaria parasite infection

    Get PDF
    Background: Although long-lasting insecticidal nets (LLINs) are the most effective tool for preventing malaria parasite transmission, the nets have some limitations. For example, the increase of LLIN use has induced the rapid expansion of mosquito insecticide resistance.More than two persons often share one net, which increases the infection risk. To overcome these problems, two new mosquito nets were developed, one incorporating piperonyl butoxide and another covering ceilings and open eaves. We designed a cluster randomized controlled trial (cRCT) to evaluate these nets based on the information provided in the present preliminary study. Results: Nearly 75% of the anopheline population in the study area in western Kenya was Anopheles gambiae s. l., and the remaining was Anopheles funestus s. l. More female anophelines were recorded in the western part of the study area. The number of anophelines increased with rainfall. We planned to have 80% power to detect a 50% reduction in female anophelines between the control group and each intervention group. The between-cluster coefficient of variance was 0.192. As the number of clusters was limited to 4 due to the size of the study area, the estimated cluster size was 7 spray catches with an alpha of 0.05. Of 1619 children tested, 626 (48%) were Plasmodium falciparum positive using a rapid diagnostic test (RDT). The prevalence was higher in the northwestern part of the study area. The number of children who slept under bed nets was 929 (71%). The P. falciparum RDT-positive prevalence (RDTpfPR) of net users was 45%, and that of non-users was 55% (OR 0.73; 95% CI 0.56, 0.95). Using 45% RDTpfPR of net users, we expected each intervention to reduce prevalence by 50%. The intracluster correlation coefficient was 0.053. With 80% power and an alpha of 0.05, the estimated cluster size was 116 children. Based on the distribution of children, we modified the boundaries of the clusters and established 300-m buffer zones along the boundaries to minimize a spillover effect. Conclusions: The cRCT study design is feasible.As the number of clusters is limited, we will apply a two-stage procedure with the baseline data to evaluate each intervention

    Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control?

    Get PDF
    Background: Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had "pushed" a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. Methods. Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. Results: We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). Conclusion: Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected "push-pull" malaria control system, where An. arabiensis mosquitoes "pushed" out of human contact by ITNs are likely being further "pulled" by cattle

    Unforeseen misuses of bed nets in fishing villages along Lake Victoria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To combat malaria, the Kenya Ministry of Health and nongovernmental organizations (NGOs) have distributed insecticide-treated nets (ITNs) for use over beds, with coverage for children under five years of age increasing rapidly. Nevertheless, residents of fishing villages have started to use these bed nets for drying fish and fishing in Lake Victoria. This study investigated the extent of bed net misuse in fishing villages.</p> <p>Methods</p> <p>Seven fishing villages along the lake were surveyed to estimate how widely bed nets were being used for fishing and drying fish. Villagers were asked why they used the bed nets for such purposes.</p> <p>Results</p> <p>In total, 283 bed nets were being used for drying fish. Of these, 239 were long-lasting insecticidal bed nets (LLIN) and 44 were non-long-lasting insecticidal bed nets (NLLIN). Further, 72 of the 283 bed nets were also being used for fishing. The most popular reasons were because the bed nets were inexpensive or free and because fish dried faster on the nets. LLINs were preferred to NLLINs for fishing and drying fish.</p> <p>Conclusion</p> <p>There is considerable misuse of bed nets for drying fish and fishing. Many villagers are not yet fully convinced of the effectiveness of LLINs for malaria prevention. Such misuses may hamper the efforts of NGOs and governmental health organizations.</p

    Impacts of insecticide treated bed nets on Anopheles gambiae s.l. populations in Mbita district and Suba district, Western Kenya

    Get PDF
    Background: Abundance and species composition of sympatric malaria vector species are the important factors governing transmission intensity. A widespread insecticidal bed net coverage may replace endophagic species with exophagic species. However, unique local environments also influence a vector population. This study examined the impacts of insecticidal bed nets on An. gambiae s.l populations in Mbita District and Suba District. Methods. The species compositions of An. gambiae s.l. larvae were compared between 1997, 2009 and 2010 and between geographical areas. The abundance and species composition of An. gambiae s.l. females resting indoors were compared between 1999, 2008 and 2010 and between geographical areas. Bed net coverage was also examined temporally and spatially, and its relationships with vector abundance and species composition were examined. Results: The relative abundance of An. gambiae s.s. larvae was 31.4% in 1997, decreasing to 7.5% in 2008 and 0.3% in 2010. The density of indoor resting An. gambiae s.l. females decreased by nearly 95%, and the relative abundance of An. gambiae s.s. females decreased from 90.6% to 60.7% and 72.4% in 2008 and 2010, respectively. However, the species composition of indoor resting An. gambiae s.l. females changed little in the island villages, and An. gambiae s.s. remained dominant in the western part of the study area. The density of house resting females was negatively associated with the number of bed nets in a retrospective analysis, but the effect of bed nets on species composition was not significant in both retrospective and cross-sectional analyses. Conclusion: An increase in bed net coverage does not necessarily replace endophilic species with exophilic species. The effect of bed nets on An. gambiae s.l. populations varies spatially, and locally unique environments are likely to influence the species composition

    Predatory capacity of a shorefly, Ochthera chalybescens, on malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since <it>Ochthera chalybescens </it>had been reported to prey on African malaria vectors, the predatory capacity of adults of this species on <it>Anopheles gambiae </it>sensu stricto was explored.</p> <p>Method</p> <p>Predatory capacity of this fly on <it>A. gambiae </it>s.s. was tested at all developmental stages, including the adult stage in the laboratory setting. Effects of water depth on its predatory capacity were also examined.</p> <p>Results</p> <p>This study revealed that <it>O. chalybescens </it>preyed on mosquitoes at all life stages except eggs. It was able to prey on an average of 9.8 to 18.8 mosquito larvae in 24 hrs. Mosquito larva size and water depth did not affect predatory capacity. However, the predacious fly preyed on significantly more 2<sup>nd</sup>-instar larvae than on pupae when larvae and pupae were both available.</p> <p>Conclusion</p> <p><it>Ochthera chalybescens </it>is, by all indications, an important predator of African malaria vectors.</p

    Distribution of a Knockdown Resistance Mutation (L1014S) in Anopheles gambiae s.s. and Anopheles arabiensis in Western and Southern Kenya

    Get PDF
    In Kenya, insecticide-treated mosquito nets (ITNs) distributed to pregnant women and children under 5 years old through various programs have resulted in a significant reduction in malaria deaths. All of the World Health Organization-recommended insecticides for mosquito nets are pyrethroids, and vector mosquito resistance to these insecticides is one of the major obstacles to an effective malaria control program. Anopheles gambiae s.s. and Anopheles arabiensis are major malaria vectors that are widely distributed in Kenya. Two point mutations in the voltage-gated sodium channel (L1014F and L1014S) are associated with knockdown resistance (kdr) to DDT and pyrethroids in An. gambiae s.s. While the same point mutations have been reported to be rare in An. arabiensis, some evidence of metabolic resistance has been reported in this species. In order to determine the distribution of the point mutation L1014S in An. gambiae s.s. and An. arabiensis in southern and western Kenya, we collected larvae and screened for the mutation by DNA sequencing. We found high allelic and homozygous frequencies of the L1014S mutation in An. gambiae s.s. The L1014S mutation was also widely distributed in An. arabiensis, although the allelic frequency was lower than in An. gambiae s.s. The same intron sequence (length: 57 base) found in both species indicated that the mutation was introgressed by hybridization. The allelic frequency of L1014S was higher in both species in western regions, demonstrating the strong selection pressure imposed by long-lasting insecticide-treated nets (LLITN)/ITN on the An. gambiae s.s. and An. arabiensis populations in those areas. The present contribution of the L1014S mutation to pyrethroid resistance in An. arabiensis may be negligible. However, the homozygous frequency could increase with continuing selection pressure due to expanded LLITN coverage in the future
    • …
    corecore