41 research outputs found

    Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction

    Get PDF
    Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene

    AMPA Receptor Auxiliary Subunit GSG1L Suppresses Short-Term Facilitation in Corticothalamic Synapses and Determines Seizure Susceptibility

    Get PDF
    The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT

    Neuroligin3 splice isoforms shape inhibitory synaptic function in the mouse hippocampus

    Get PDF
    Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, transsynaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate Neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus

    Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions

    Get PDF
    Single-particle electron microscopy (EM) combined with biochemical measurements revealed the molecular shape of SAP97 and a monomer-dimer transition that depended on the N-terminal L27 domain. Overexpression of SAP97 drove GluR1 to synapses, potentiated AMPA receptor (AMPAR) excitatory postsynaptic currents (EPSCs), and occluded LTP. Synaptic potentiation and GluR1 delivery were dissociable by L27 domain mutants that inhibit multimerization of SAP97. Loss of potentiation was correlated with faster turnover of monomeric SAP97 mutants in dendritic spines. We propose that L27-mediated interactions of SAP97 with itself or other proteins regulate the synaptic delivery of AMPARs. RNAi knockdown of endogenous PSD-95 depleted surface GluR1 and impaired AMPA EPSCs. In contrast, RNAi knockdown of endogenous SAP97 reduced surface expression of both GluR1 and GluR2 and inhibited both AMPA and NMDA EPSCs. Thus SAP97 has a broader role than its close relative, PSD-95, in the maintenance of synaptic function

    Specific Neuroligin3-alphaNeurexin1 signaling regulates GABAergic synaptic function in mouse hippocampus

    Get PDF
    Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the alphaNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic alphaNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn signaling generates distinct functional properties at synapses

    Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95

    Get PDF
    SummaryThe scaffold protein PSD-95 promotes the maturation and strengthening of excitatory synapses, functions that require proper localization of PSD-95 in the postsynaptic density (PSD). Here we report that phosphorylation of ser-295 enhances the synaptic accumulation of PSD-95 and the ability of PSD-95 to recruit surface AMPA receptors and potentiate excitatory postsynaptic currents. We present evidence that a Rac1-JNK1 signaling pathway mediates ser-295 phosphorylation and regulates synaptic content of PSD-95. Ser-295 phosphorylation is suppressed by chronic elevation, and increased by chronic silencing, of synaptic activity. Rapid dephosphorylation of ser-295 occurs in response to NMDA treatment that causes chemical long-term depression (LTD). Overexpression of a phosphomimicking mutant (S295D) of PSD-95 inhibited NMDA-induced AMPA receptor internalization and blocked the induction of LTD. The data suggest that synaptic strength can be regulated by phosphorylation-dephosphorylation of ser-295 of PSD-95 and that synaptic depression requires the dephosphorylation of ser-295

    A Specific Neuroligin3-αNeurexin1 Code Regulates GABAergic Synaptic Function in Mouse Hippocampus [preprint]

    Get PDF
    Synapse formation and regulation require interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here, we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn interactions generate distinct functional properties at synapses

    Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia

    Get PDF
    Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease

    A highly efficient method for single-cell electroporation in mouse organotypic hippocampal slice culture

    No full text
    BACKGROUND: Exogenous gene introduction by transfection is one of the most important approaches for understanding the function of specific genes at the cellular level. Electroporation has a long-standing history as a versatile gene delivery technique in vitro and in vivo. However, it has been underutilized in vitro because of technical difficulty and insufficient transfection efficiency. NEW METHOD: We have developed an electroporation technique that combines the use of large glass electrodes, tetrodotoxin-containing artificial cerebrospinal fluid and mild electrical pulses. Here, we describe the technique and compare it with existing methods. RESULTS: Our method achieves a high transfection efficiency ( approximately 80 %) in both excitatory and inhibitory neurons with no detectable side effects on their function. We demonstrate this method is capable of transferring at least three different genes into a single neuron. In addition, we demonstrate the ability to transfect different genes into neighboring cells. COMPARISON WITH EXISTING METHODS: The majority of existing methods use fine-tipped glass electrodes (i.e. \u3e 10MOmega) and apply high voltage (10V) pulses with high frequency (100Hz) for 1s. These parameters contribute to practical difficulties thus lowering the transfection efficiency. Our unique method minimizes electrode clogging and therefore procedure duration, increasing transfection efficiency and cellular viability. CONCLUSIONS: Our modifications, relative to current methods, optimize electroporation efficiency and cell survival. Our approach offers distinct research strategies not only in elucidating cell-autonomous functions of genes but also for assessing genes contributing to intercellular functions, such as trans-synaptic interactions
    corecore