21 research outputs found

    Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm

    Full text link
    [EN] In this work, we develop a new design method based on fast Fourier transform (FFT) for implementing zone plates (ZPs) with bifocal focusing profiles. We show that the FFT of the governing binary sequence provides a discrete sequence of the same length, which indicates the location of the main foci at the ZP focusing profile. Then, using reverse engineering and establishing a target focusing profile, we are capable of generating a binary sequence that provides a ZP with the desired focusing profile. We show that this design method, based on the inverse fast Fourier transform (IFFT), is very flexible and powerful and allows to tailor the design of bifocal ZPs to achieve focusing profiles with the desired foci locations and resolutions. The key advantage of our design algorithm, compared to other alternatives presented in previous works, is that our method provides bifocal focusing profiles with an absolute control of the foci locations. Moreover, although we analyze the performance of this novel design algorithm for underwater ultrasonics, it can also be successfully extended to different fields of physics, such as optics or microwaves, where ZPs are widely employed.This work has been supported by the Spanish MICINN RTI2018-100792-B-I00 project and Generalitat Valenciana AICO/2020/139 project.Fuster Escuder, JM.; Pérez-López, S.; Candelas Valiente, P. (2021). Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm. Sensors. 21(24):1-17. https://doi.org/10.3390/s21248285S117212

    Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens

    Full text link
    [EN] Ultrasound focusing is a hot topic due to its multiple applications in many fields, including biomedical imaging, thermal ablation of cancerous tissues, and non destructive testing in industrial environments. In such applications, the ability to control the focal distance of the ultrasound device in real-time is a key advantage over conventional devices with fixed focal parameters. Here, we present a method to achieve multiple time-modulated ultrasound foci using a single planar monofocal Fresnel Zone Plate. The method takes advantage of the focal distance linear dependence on the operating frequency of this kind of lenses to design a sequence of contiguous modulated rectangular pulses that achieve different focal distances and intensities as a function of time. Both numerical simulations and experimental results are presented, demonstrating the feasibility and potential of this technique.This work has been supported by Spanish MICINN project number RTI2018-100792-B-I00 and Generalitat Valenciana project AICO/2020/139. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant program PAID-01-18.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2021). Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens. Scientific Reports. 11(1):1-7. https://doi.org/10.1038/s41598-021-92849-xS17111Schmerr, L. W. Fundamentals of Ultrasonic Nondestructive Evaluation. Springer Series in Measurement Science and Technology (Springer International Publishing, 2016).Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).Fan, X. & Hynynen, K. Ultrasound surgery using multiple sonications—Treatment time considerations. Ultrasound Med. Biol. 22, 471–482. https://doi.org/10.1016/0301-5629(96)00026-9 (1996).ter Haar, G. & Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104. https://doi.org/10.1080/02656730601186138 (2007).Guo, S., Jing, Y. & Jiang, X. Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 1699–1707. https://doi.org/10.1109/TUFFC.2013.2751 (2013).Ebbini, E. & Cain, C. Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 540–548. https://doi.org/10.1109/58.31798 (1989).Casper, A., Liu, D. & Ebbini, E. S. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans. Biomed. Eng. 59, 95–105. https://doi.org/10.1109/TBME.2011.2162105 (2012).Ilovitsh, A., Ilovitsh, T., Foiret, J., Stephens, D. N. & Ferrara, K. W. Simultaneous axial multifocal imaging using a single acoustical transmission: A practical implementation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66, 273–284. https://doi.org/10.1109/TUFFC.2018.2885080 (2019).Lalonde, R., Worthington, A. & Hunt, J. Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 40, 592–602. https://doi.org/10.1109/58.238113 (1993).Lalonde, R. & Hunt, J. Variable frequency field conjugate lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 825–831. https://doi.org/10.1109/58.464838 (1995).Brown, M. D., Allen, T. J., Cox, B. T. & Treeby, B. E. Control of optically generated ultrasound fields using binary amplitude holograms. in IEEE International Ultrasonics Symposium, IUS, 1037–1040. https://doi.org/10.1109/ULTSYM.2014.0254 (IEEE, 2014).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522. https://doi.org/10.1038/nature19755 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Appl. Phys. Lett. 111, 244101. https://doi.org/10.1063/1.5004040 (2017).Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Phys. Rev. Appl. 12, 014016. https://doi.org/10.1103/PhysRevApplied.12.014016 (2019).Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972. https://doi.org/10.1364/JOSA.62.000972 (1972).Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S. & Viegas, J. Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci. Rep. 7, 4485. https://doi.org/10.1038/s41598-017-04490-2 (2017).Kim, H. et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express 25, 30290. https://doi.org/10.1364/OE.25.030290 (2017).Kirz, J. Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64, 301–309. https://doi.org/10.1364/JOSA.64.000301 (1974).Yashiro, W., Takeda, Y., Takeuchi, A., Suzuki, Y. & Momose, A. Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating. Phys. Rev. Lett. 103, 180801. https://doi.org/10.1103/PhysRevLett.103.180801 (2009).Hristov, H. D. & Herben, M. H. Millimeter-wave fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech. 43, 2779–2785. https://doi.org/10.1109/22.475635 (1995).Hristov, H. D. & Rodriguez, J. M. Design equation for multidielectric fresnel zone plate lens. IEEE Microw. Wirel. Components Lett. 22, 574–576. https://doi.org/10.1109/LMWC.2012.2224099 (2012).Chao, G., Auld, B. A. & Winslow, D. K. Focusing and scanning of acoustic beams with fresnel zone plates. in 1972 Ultrasonics Symposium, 140–143. https://doi.org/10.1109/ultsym.1972.196048 (IEEE, 1972).Farnow, S. A. & Auld, B. A. Acoustic fresnel zone plate transducers. Appl. Phys. Lett. 25, 681–682. https://doi.org/10.1063/1.1655359 (1974).Farnow, S. A. & Auld, B. A. An acoustic phase plate imaging device. in Acoustical Holography, Vol. 6 (ed. Booth, N.) 259–273. https://doi.org/10.1007/978-1-4615-8216-8_14 (Springer US, 1975).Yamada, K. & Shimizu, H. Planar-structure focusing lens for acoustic microscope. in Ultrasonics Symposium Proceedings, 755–758. https://doi.org/10.1109/ultsym.1985.198612 (IEEE, 1985).Calvo, D. C., Thangawng, A. L., Nicholas, M. & Layman, C. N. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103. https://doi.org/10.1063/1.4926607 (2015).Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101. https://doi.org/10.1063/1.5029424 (2018).Monsoriu, J. A. et al. Bifocal fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106. https://doi.org/10.1109/JPHOT.2013.2248707 (2013).Pérez-López, S., Fuster, J. M. & Candelas, P. M-Bonacci zone plates for ultrasound focusing. Sensors 19, 4313. https://doi.org/10.3390/s19194313 (2019).Saavedra, G., Furlan, W. D. & Monsoriu, J. A. Fractal zone plates. Opt. Lett. 28, 971. https://doi.org/10.1364/ol.28.000971 (2003).Pérez-López, S., Fuster, J. M., Candelas, P. & Rubio, C. Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics 99, 105967. https://doi.org/10.1016/j.ultras.2019.105967 (2019).Tarrazó-Serrano, D., Pérez-López, S., Candelas, P., Uris, A. & Rubio, C. Acoustic focusing enhancement in fresnel zone plate lenses. Sci. Rep. 9, 7067. https://doi.org/10.1038/s41598-019-43495-x (2019).Fuster, J. M., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S. & Rubio, C. Analysis of fresnel zone plates focusing dependence on operating frequency. Sensors (Switzerland) 17, 2809. https://doi.org/10.3390/s17122809 (2017).Muelas-Hurtado, R. D., Ealo, J. L. & Volke-Sepúlveda, K. Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices. Appl. Phys. Lett. 116, 114101. https://doi.org/10.1063/1.5137766 (2020).Xia, X. et al. Ultrasonic tunable focusing by a stretchable phase-reversal Fresnel zone plate. Appl. Phys. Lett. 117, 021904. https://doi.org/10.1063/5.0018663 (2020).Pérez-López, S., Tarrazó-Serrano, D., Dolmatov, D. O., Rubio, C. & Candelas, P. Transient analysis of fresnel zone plates for ultrasound focusing applications. Sensors 20, 6824. https://doi.org/10.3390/s20236824 (2020).Liu, D.-L. & Waag, R. Propagation and backpropagation for ultrasonic wavefront design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1–13. https://doi.org/10.1109/58.585184 (1997)

    M-Bonacci Zone Plates for Ultrasound Focusing

    Full text link
    [EN] In this work, we present a thorough analysis on M-bonacci zone plates for ultrasound focusing applications. These planar lenses are capable of providing bifocal focusing profiles with equal intensity in both foci and become very appealing for a wide range of scenarios including medical and industrial applications. We show that in high-wavelength domains, such as acoustics or microwaves, the separation between both foci can be finely adjusted at the expense of slightly increasing the distortion of the focusing profile, and we introduce a design parameter to deal with this issue and simplify the design process of these lenses. Experimental measurements are in good agreement with numerical simulations and demonstrate the potential of M-bonacci lenses in ultrasound focusing applications.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia grant program PAID-01-18.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2019). M-Bonacci Zone Plates for Ultrasound Focusing. Sensors. 19(19):1-13. https://doi.org/10.3390/s19194313S1131919Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., & Cheng, J. (2014). Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports, 4(1). doi:10.1038/srep06830Lan, J., Li, Y., Xu, Y., & Liu, X. (2017). Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators. Scientific Reports, 7(1). doi:10.1038/s41598-017-10781-5Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016Pérez-López, S., Fuster, J. M., Minin, I. V., Minin, O. V., & Candelas, P. (2019). Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Scientific Reports, 9(1). doi:10.1038/s41598-019-50019-0Veira Canle, D., Kekkonen, T., Mäkinen, J., Puranen, T., Nieminen, H. J., Kuronen, A., … Hæggström, E. (2019). Practical realization of a sub-λ/2 acoustic jet. Scientific Reports, 9(1). doi:10.1038/s41598-019-41335-6Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712Tarrazó-Serrano, D., Pérez-López, S., Candelas, P., Uris, A., & Rubio, C. (2019). Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses. Scientific Reports, 9(1). doi:10.1038/s41598-019-43495-xRodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Clement, G., Nomura, H., & Kamakura, T. (2015). Ultrasound field measurement using a binary lens. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2), 350-359. doi:10.1109/tuffc.2014.006800Pérez-López, S., Fuster, J. M., Candelas, P., & Rubio, C. (2019). On the focusing enhancement of Soret zone plates with ultrasound directional transducers. Applied Physics Letters, 114(22), 224101. doi:10.1063/1.5100219Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.008267Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109Mendoza-Yero, O., Fernández-Alonso, M., Mínguez-Vega, G., Lancis, J., Climent, V., & Monsoriu, J. A. (2009). Fractal generalized zone plates. Journal of the Optical Society of America A, 26(5), 1161. doi:10.1364/josaa.26.001161Ferrando, V., Giménez, F., Furlan, W. D., & Monsoriu, J. A. (2015). Bifractal focusing and imaging properties of Thue–Morse Zone Plates. Optics Express, 23(15), 19846. doi:10.1364/oe.23.019846Xia, T., Cheng, S., & Tao, S. (2018). Generation of three equal-intensity foci based on a modified composite zone plate. Optik, 159, 150-156. doi:10.1016/j.ijleo.2018.01.071Fuster, J., Pérez-López, S., Candelas, P., & Rubio, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors, 18(8), 2604. doi:10.3390/s18082604Nie, L., Cai, X., Maslov, K., Garcia-Uribe, A., Anastasio, M. A., & Wang, L. V. (2012). Photoacoustic tomography through a whole adult human skull with a photon recycler. Journal of Biomedical Optics, 17(11), 110506. doi:10.1117/1.jbo.17.11.110506Chen, M., Knox, H. J., Tang, Y., Liu, W., Nie, L., Chan, J., & Yao, J. (2019). Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Optics Letters, 44(15), 3773. doi:10.1364/ol.44.003773Ter Haar, >Gail, & Coussios, C. (2007). High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, 23(2), 89-104. doi:10.1080/02656730601186138Suo, D., Jin, Z., Jiang, X., Dayton, P. A., & Jing, Y. (2017). Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: AnIn vitrostudy. Applied Physics Letters, 110(2), 023703. doi:10.1063/1.4973857GyP, S., DY, L., & G, H. (2017). What is on the Horizon for Hyperthermic Cancer Therapy? Journal of Traditional Medicine & Clinical Naturopathy, 06(02). doi:10.4172/2573-4555.1000217Simon, J. C., Sapozhnikov, O. A., Khokhlova, V. A., Wang, Y.-N., Crum, L. A., & Bailey, M. R. (2012). Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Physics in Medicine and Biology, 57(23), 8061-8078. doi:10.1088/0031-9155/57/23/8061Jeong, J. S., Cannata, J. M., & Shung, K. K. (2010). Dual-Focus Therapeutic Ultrasound Transducer for Production of Broad Tissue Lesions. Ultrasound in Medicine & Biology, 36(11), 1836-1848. doi:10.1016/j.ultrasmedbio.2010.08.008Jong Seob Jeong. (2013). Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(5), 924-931. doi:10.1109/tuffc.2013.264

    Práctica de Laboratorio: Ondas Guiadas

    Full text link
    En este artículo se presenta un resumen de la teoría básica de Propagación de Ondas Guiadas. Es una práctica de aula, ya que el alumno no va a utilizar recursos de laboratorio si no sus propios recursos didácticos: apuntes de clase y libros. Esta práctica se puede trabajar de forma individual o en grupo, pero siempre de forma autónoma porque se pretende que el alumno se enfrente a la resolución de problemas complejos antes de asistir a los actos de evaluación de la asignatura. La colección de problemas se entregará a la entrada a la práctica y los alumnos deberán resolverla durante las dos horas de duración de la misma. La resolución de los problemas se publicará en Poliformat tras la práctica con la idea que el alumno puede autoevaluarse.Bachiller Martin, MC.; Fuster Escuder, JM. (2013). Práctica de Laboratorio: Ondas Guiadas. http://hdl.handle.net/10251/2935

    Práctica de Laboratorio: Incidencia en Ondas Planas

    Full text link
    En este artículo se presenta un resumen de la teoría básica de Incidencia de Ondas Planas. Es una práctica de aula, ya que el alumno no va a utilizar recursos de laboratorio si no sus propios recursos didácticos: apuntes de clase y libros. Esta práctica se puede trabajar de forma individual o en grupo, pero siempre de forma autónoma porque se pretende que el alumno se enfrente a la resolución de problemas complejos antes de asistir a los actos de evaluación de la asignatura. La colección de problemas se entregará a la entrada a la práctica y los alumnos deberán resolverla durante las dos horas de duración de la misma. La resolución de los problemas se publicará en Poliformat tras la práctica con la idea que el alumno puede autoevaluarse.Bachiller Martin, MC.; Fuster Escuder, JM. (2013). Práctica de Laboratorio: Incidencia en Ondas Planas. http://hdl.handle.net/10251/2935

    Práctica de Laboratorio: Resolución de las Ecuaciones del EM en RPS. Problemas de Polarización.

    Full text link
    La propagación de ondas planas tiene un componente teórico y otro práctico, como parte del componente práctico se tiene la resolución de problemas complejos que tienen que ver tanto con los parámetros y definición de la onda, como con la polarización de la misma. Los alumnos reciben en las clases teóricas suficiente información para poder resolver dichos problemas, pero sólo enfrentándose a ellos puede adquirir la competencia para resolverlos adecuadamente. Muchas veces los alumnos se quejan de que los exámenes son demasiado complejos o largos, que no están acostumbrados a trabajar bajo presión y que sabiendo resolverlos ¿los nervios los traicionan¿, una forma de evitar que esto ocurra puede ser que se hayan enfrentado con antelación a esa experiencia pero sin consecuencias negativas.Bachiller Martin, MC.; Fuster Escuder, JM. (2013). Práctica de Laboratorio: Resolución de las Ecuaciones del EM en RPS. Problemas de Polarización. http://hdl.handle.net/10251/2932

    Design of Binary-Sequence Zone Plates in High Wavelength Domains

    Full text link
    [EN] The design of zone plates is an important topic in many areas of physics, such as optics, X-rays, microwaves or ultrasonics. In this paper, a zone plate design method, which provides high flexibility in the shaping of the focusing profile, is analyzed. This flexibility is achieved through the use of binary sequences that produce zone plates with different properties and applications. It is shown that this binary-sequence method works properly at low wavelengths, but requires a modification term to work accurately in high wavelength domains. This additional term extends this powerful design method to any wavelength. Simulation results show acoustic focusing profiles for Fresnel, Fibonacci and Cantor zone plates operating at a wavelength of 1.5 mm without any distortion.This work was supported by the Spanish MINECO (TEC2015-70939-R).Fuster Escuder, JM.; Pérez-López, S.; Candelas Valiente, P.; Rubio Michavila, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors. 18(8):2604-1-2604-8. https://doi.org/10.3390/s18082604S2604-12604-8188Tamura, S., Yasumoto, M., Kamijo, N., Takeuchi, A., Uesugi, K., Terada, Y., & Suzuki, Y. (2009). Quasi-blazed type multilayer zone plate for X-rays. Vacuum, 84(5), 578-580. doi:10.1016/j.vacuum.2009.03.037Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Yang, R., Tang, W., & Hao, Y. (2011). A broadband zone plate lens from transformation optics. Optics Express, 19(13), 12348. doi:10.1364/oe.19.012348Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Stout-Grandy, S. M., Petosa, A., Minin, I. V., Minin, O. V., & Wight, J. (2006). A Systematic Study of Varying Reference Phase in the Design of Circular Fresnel Zone Plate Antennas. IEEE Transactions on Antennas and Propagation, 54(12), 3629-3637. doi:10.1109/tap.2006.886552Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S., & Rubio, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors, 17(12), 2809. doi:10.3390/s17122809Kennedy, J. E., Wu, F., ter Haar, G. R., Gleeson, F. V., Phillips, R. R., Middleton, M. R., & Cranston, D. (2004). High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics, 42(1-9), 931-935. doi:10.1016/j.ultras.2004.01.089Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Ferrando, V., Giménez, F., Furlan, W. D., & Monsoriu, J. A. (2015). Bifractal focusing and imaging properties of Thue–Morse Zone Plates. Optics Express, 23(15), 19846. doi:10.1364/oe.23.019846Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.00826

    Analysis of Predistortion Techniques on Fresnel Zone Plates in Ultrasound Applications

    Full text link
    [EN] In this work, we analyze the effect of predistortion techniques on the focusing profile of Fresnel Zone Plates (FZPs) in ultrasound applications. This novel predistortion method is based on either increasing or decreasing the width of some of the FZP Fresnel rings by a certain amount. We investigate how the magnitude of the predistortion, as well as the number and location of the predistorted rings, influences the lens focusing profile. This focusing profile can be affected in different ways depending on the area of the lens where the predistortion is applied. It is shown that when the inner area of the lens, closer to its center, is predistorted, this technique allows the control of the focal depth at the main focus. However, when the predistortion is applied to an area farther from the center of the lens, the acoustic intensity distribution among the main focus and the closest adjacent secondary foci can be tailored at a certain degree. This predistortion technique shows great potential and can be used to control, modify and shape the FZP focusing profile in both industrial and therapeutic applications.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project and Generalitat Valenciana AICO/2020/139 project.Fuster Escuder, JM.; Pérez-López, S.; Belmar Ibáñez, F.; Candelas Valiente, P. (2021). Analysis of Predistortion Techniques on Fresnel Zone Plates in Ultrasound Applications. Sensors. 21(15):1-12. https://doi.org/10.3390/s21155066S112211

    On the focusing enhancement of Soret zone plates with ultrasound directional transducers

    Full text link
    All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).[EN] This work analyzes the influence of the distribution of transparent Fresnel regions over the focusing profile of Soret Zone Plates. It is shown that this effect becomes very significant in those fields where directional transducers are employed, such as microwaves or acoustics. A thorough analysis on both the lens transmission efficiency and the focusing enhancement factor is presented. Moreover, experimental measurements are also carried out, validating the theoretical model and demonstrating that the distribution of transparent Fresnel regions becomes a critical parameter in applications requiring directional emitters.This work was supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant Program No. PAID-01-18.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P.; Rubio Michavila, C. (2019). On the focusing enhancement of Soret zone plates with ultrasound directional transducers. Applied Physics Letters. 114(22):224101-1-224101-5. https://doi.org/10.1063/1.5100219S224101-1224101-511422Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., & Cheng, J. (2014). Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports, 4(1). doi:10.1038/srep06830Xia, J., Zhang, X., Sun, H., Yuan, S., Qian, J., & Ge, Y. (2018). Broadband Tunable Acoustic Asymmetric Focusing Lens from Dual-Layer Metasurfaces. Physical Review Applied, 10(1). doi:10.1103/physrevapplied.10.014016Kipp, L., Skibowski, M., Johnson, R. L., Berndt, R., Adelung, R., Harm, S., & Seemann, R. (2001). Sharper images by focusing soft X-rays with photon sieves. Nature, 414(6860), 184-188. doi:10.1038/35102526Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Hristov, H. D., & Herben, M. H. A. J. (1995). Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Transactions on Microwave Theory and Techniques, 43(12), 2779-2785. doi:10.1109/22.475635Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.503671

    Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones

    Full text link
    El estudio de la Ingeniería de Telecomunicación tiene un componente práctico muy importante. Las diferentes disciplinas de la Telecomunicación llevan asociadas dispositivos e instrumentos de medida específicos. En esta práctica se presenta al alumno el Laboratorio de Radiocomunicaciones, que contiene dispositivos para la generación y medida de todo tipo de señales de alta frecuencia, bien sea para su transmisión en medios guiados o en espacio libre.Bachiller Martin, MC.; Fuster Escuder, JM.; Sempere Payá, L. (2013). Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones. http://hdl.handle.net/10251/2929
    corecore