5 research outputs found
Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry
Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology.Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance
New York State Emergency Preparedness and Response to Influenza Pandemics 1918β2018
Emergency health preparedness and response efforts are a necessity in order to safeguard the public against major events, such as influenza pandemics. Since posting warnings of the epidemic influenza in 1918, to the mass media communications available a century later, state, national and global public health agencies have developed sophisticated networks, tools, detection methods, and preparedness plans. These progressive measures guide health departments and clinical providers, track patient specimens and test reports, monitor the spread of disease, and evaluate the most threatening influenza strains by means of risk assessment, to be able to respond readily to a pandemic. Surge drills and staff training were key aspects for New York State preparedness and response to the 2009 influenza pandemic, and the re-evaluation of preparedness plans is recommended to ensure readiness to address the emergence and spread of a future novel virulent influenza strain
Evidence that Accumulation of Mutants in a Biofilm Reflects Natural Selection Rather than Stress-Induced Adaptive Mutation
The accumulation of mutant genotypes within a biofilm evokes the controversy over whether the biofilm environment induces adaptive mutation or whether the accumulation can be explained by natural selection. A comparison of the virulence of two strains of the dental pathogen Streptococcus mutans showed that rats infected with one of the strains accumulated a high proportion (average, 22%) of organisms that had undergone a deletion between two contiguous and highly homologous genes. To determine if the accumulation of deletion mutants was due to selection or to an increased mutation rate, accumulations of deletion mutants within in vitro planktonic and biofilm cultures and within rats inoculated with various proportions of deletion organisms were quantified. We report here that natural selection was the primary force behind the accumulation of the deletion mutants