4,166 research outputs found
Systems identification and application systems development for monitoring the physiological and health status of crewmen in space
The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems
Ferromagnetic transition in a double-exchange system containing impurities in the Dynamical Mean Field Approximation
We formulate the Dynamical Mean Field Approximation equations for the
double-exchange system with quenched disorder for arbitrary relation between
Hund exchange coupling and electron band width. Close to the
ferromagnetic-paramagnetic transition point the DMFA equations can be reduced
to the ordinary mean field equation of Curie-Weiss type. We solve the equation
to find the transition temperature and present the magnetic phase diagram of
the system.Comment: 5 pages, latex, 2 eps figures. We explicitely present the magnetic
phase diagram of the syste
Large-Eddy Simulation of Premixed Combustion in the Corrugated-Flamelet Regime
© 2015, Published with license by Taylor & Francis Group, LLC © 2015, © I. Langella, N. Swaminathan, F. A. Williams, and J. Furukawa. Large-eddy simulation (LES) is applied to a fuel-lean turbulent propane-air Bunsen flame in the corrugated-flamelet regime. The subgrid-scale (SGS) modeling includes a previously developed treatment of the total enthalpy along with three different SGS velocity, (Formula presented.) , models. In addressing the filtered reaction rate, a presumed probability density function (PDF) approach is employed for the reaction-progress variable, closed by a transport equation for its SGS variance. The statistics obtained using the three (Formula presented.) models are in good agreement with the measurements and do not differ significantly from each other for first-order moments suggesting that commonly used SGS modeling may be adequate to get the mean velocities and reaction progress variable. However, all three SGS velocity models fail to reflect a measured bimodality of the PDF of the radial component of the velocity in the central portion of the flame. This emphasizes a need for further development of (Formula presented.) models required at the reaction rate closure level for practical LES of combustion in the corrugated-flamelet regime
Theory of Transition Temperature of Magnetic Double Perovskites
We formulate a theory of double perovskite coumpounds such as SrFeReO
and SrFeMoO which have attracted recent attention for their possible
uses as spin valves and sources of spin polarized electrons. We solve the
theory in the dynamical mean field approximation to find the magnetic
transition temperature . We find that is determined by a subtle
interplay between carrier density and the Fe-Mo/Re site energy difference, and
that the non-Fe same-sublattice hopping acts to reduce . Our results
suggest that presently existing materials do not optimize
Non-perturbative model and ferromagnetism in dilute magnets
We calculate magnetic couplings in the model for dilute magnets, in
order both to identify the relevant parameters which control ferromagnetism and
also to bridge the gap between first principle calculations and model
approaches. The magnetic exchange interactions are calculated
non-perturbatively and disorder in the configuration of impurities is treated
exacly, allowing us to test the validity of effective medium theories.
Results differ qualitatively from those of weak coupling. In contrast to mean
field theory, increasing may not favor high Curie temperatures:
scales primarily with the bandwidth. High temperature ferromagnetism at small
dilutions is associated with resonant structure in the p-band. Comparison to
diluted magnetic semiconductors indicate that Ga(Mn)As has such a resonant
structure and thus this material is already close to optimality.Comment: 4 pages, 4 Figure
Magnon Broadening Effect by Magnon-Phonon Interaction in Colossal Magnetoresistance Manganites
In order to study the magnetic excitation behaviors in colossal
magnetoresistance manganites, a magnon-phonon interacting system is
investigated. Sudden broadening of magnon linewidth is obtained when a magnon
branch crosses over an optical phonon branch. Onset of the broadening is
approximately determined by the magnon density of states. Anomalous magnon
damping at the brillouine zone boundary observed in low Curie temperature
manganites is explained.Comment: 4 pages incl. 4 figs. New e-mail: [email protected]
Magnetic Order in the Double Exchange Model in Infinite Dimensions
We studied magnetic properties of the double exchange (DE) model with S=1/2
localized spins at T=0, using exact diagonalization in the framework of the
dynamical mean field theory. Obtained phase diagram contains ferromagnetic,
antiferromagnetic and paramagnetic phases. Comparing the phase diagram with
that of the DE model with classical localized spins, we found that the quantum
fluctuations of localized spins partly destabilize the ferromagnetism and
expand the paramagnetic phase region. We found that phase separations occur
between the antiferromagnetic and paramagnetic phases as well as the
paramagnetic and ferromagnetic ones.Comment: 11 pages, LaTeX, 9 eps-figure
Truncation of a 2-dimensional Fermi surface due to quasiparticle gap formation at the saddle points
We study a two-dimensional Fermi liquid with a Fermi surface containing the
saddle points and . Including Cooper and Peierls channel
contributions leads to a one-loop renormalization group flow to strong coupling
for short range repulsive interactions. In a certain parameter range the
characteristics of the fixed point, opening of a spin and charge gap and
dominant pairing correlations are similar to those of a 2-leg ladder at
half-filling. An increase of the electron density we argue leads to a
truncation of the Fermi surface with only 4 disconnected arcs remaining.Comment: Reference added. RevTeX 4 pages incl. 4 ps file
Renormalization group analysis of the 2D Hubbard model
Salmhofer [Commun. Math. Phys. 194, 249 (1998)] has recently developed a new
renormalization group method for interacting Fermi systems, where the complete
flow from the bare action of a microscopic model to the effective low-energy
action, as a function of a continuously decreasing infrared cutoff, is given by
a differential flow equation which is local in the flow parameter. We apply
this approach to the repulsive two-dimensional Hubbard model with nearest and
next-nearest neighbor hopping amplitudes. The flow equation for the effective
interaction is evaluated numerically on 1-loop level. The effective
interactions diverge at a finite energy scale which is exponentially small for
small bare interactions. To analyze the nature of the instabilities signalled
by the diverging interactions we extend Salmhofers renormalization group for
the calculation of susceptibilities. We compute the singlet superconducting
susceptibilities for various pairing symmetries and also charge and spin
density susceptibilities. Depending on the choice of the model parameters
(hopping amplitudes, interaction strength and band-filling) we find
commensurate and incommensurate antiferromagnetic instabilities or d-wave
superconductivity as leading instability. We present the resulting phase
diagram in the vicinity of half-filling and also results for the density
dependence of the critical energy scale.Comment: 16 pages, RevTeX, 16 eps figure
Observation of anomalous single-magnon scattering in half-metallic ferromagnets by chemical pressure control
Temperature variation of resistivity and specific heat have been measured for
prototypical half-metallic ferromagnets,
R_0.6Sr_0.4MnO_3, with controlling the one-electron bandwidth W. We have
found variation of the temperature scalings in the resistivity from
T^2 (R = La, and Nd) to T^3 (R = Sm), and have interpreted the $T^3-law in
terms of the anomalous single-magnon scattering (AMS) process in the
half-metallic system.Comment: To appear in Phys. Rev. Lett., 3 pages + 4 EPS figure
- …