62 research outputs found

    Mechanisms of Neuronal Death in Synucleinopathy

    Get PDF
    α-synuclein is a key molecule in the pathogenesis of synucleinopathy including Parkinson's disease and multiple system atrophy. In this mini-review, we mainly focus on recent data obtained from cellular models of synucleinopathy and discuss the possible mechanisms of neurodegeneration. Recent progress suggests that the aggregate formation of α-synuclein is cytoprotective and that its precursor oligomer (protofibril) may be cytotoxic. The catechol-derived quinones are the candidate molecules that facilitate the oligomer formation of α-synuclein. Furthermore, the cellular membranes are shown to be the primary targets injured by mutant α-synucleins, and the mitochondrial dysfunction seems to be an initial step in the neuronal death

    The AAA-ATPase VPS4 Regulates Extracellular Secretion and Lysosomal Targeting of α-Synuclein

    Get PDF
    Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular αSYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of αSYN but facilitated αSYN secretion. The hypersecretion of αSYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of αSYN and thereby contribute to the intercellular propagation of Lewy pathology in PD

    PROBLEM STRUCTURING OF DISCUSSIONS ON ROAD PRICING SCHEME PROPOSED BY THE TOKYO METROPOLITAN GOVERNMENT

    No full text

    Amyloid β levels in human red blood cells.

    Get PDF
    UNLABELLED: Amyloid β-peptide (Aβ) is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs) to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD). Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid) to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging), implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN42483402
    corecore