42 research outputs found
Cardiomyocyte-specific estrogen receptor alpha increases angiogenesis, lymphangiogenesis and reduces fibrosis in the female mouse heart post-myocardial infarction
Experimental studies showed that 17{beta}-estradiol (E2) and activated Estrogen Receptors (ER) protect the heart from ischemic injury. However, the underlying molecular mechanisms are not well understood. To investigate the role of ER{alpha} in cardiomyocytes in the setting of myocardial ischemia, we generated transgenic mice with cardiomyocyte-specific overexpression of ER-{alpha} (ER{alpha}-OE) and subjected them to Myocardial Infarction (MI). At the basal level, female and male ER{alpha}-OE mice showed increased Left Ventricular (LV) mass, LV volume and cardiomyocyte length. Two weeks after MI, LV volume was significantly increased and LV wall thickness decreased in female and male WT-mice and male ER{alpha}-OE, but not in female ER{alpha}-OE mice. ER{alpha}-OE enhanced expression of angiogenesis and lymphangiogenesis markers (Vegf, Lyve-1), and neovascularization in the peri-infarct area in both sexes. However, attenuated level of fibrosis and higher phosphorylation of JNK signaling pathway could be detected only in female ER{alpha}-OE after MI. In conclusion, our study indicates that ER{alpha} protects female mouse cardiomyocytes from the sequelae of ischemia through induction of neovascularization in a paracrine fashion and impaired fibrosis, which together may contribute to the attenuation of cardiac remodelling
Fractal Reconnection in Solar and Stellar Environments
Recent space based observations of the Sun revealed that magnetic
reconnection is ubiquitous in the solar atmosphere, ranging from small scale
reconnection (observed as nanoflares) to large scale one (observed as long
duration flares or giant arcades). Often the magnetic reconnection events are
associated with mass ejections or jets, which seem to be closely related to
multiple plasmoid ejections from fractal current sheet. The bursty radio and
hard X-ray emissions from flares also suggest the fractal reconnection and
associated particle acceleration. We shall discuss recent observations and
theories related to the plasmoid-induced-reconnection and the fractal
reconnection in solar flares, and their implication to reconnection physics and
particle acceleration. Recent findings of many superflares on solar type stars
that has extended the applicability of the fractal reconnection model of solar
flares to much a wider parameter space suitable for stellar flares are also
discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and
Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016),
33 pages, 18 figure
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter
Promoters whose temporal activity can be directly manipulated in transgenic animals provide a tool for the study of gene functions in vivo. We have evaluated a tetracycline-responsive binary system for its ability to temporally control gene expression in transgenic mice. In this system, a tetracycline-controlled trans-activator protein (tTA), composed of the repressor of the tetracycline-resistance operon (tet from Escherichia coli transposon Tn10) and the activating domain of viral protein VP16 of herpes simplex virus, induces transcription from a minimal promoter (PhCMV*-1; see below) fused to seven tet operator sequences in the absence of tetracycline but not in its presence. Transgenic mice were generated that carried either a luciferase or a beta-galactosidase reporter gene under the control of PhCMV*-1 or a transgene containing the tTA coding sequence under the control of the human cytomegalovirus immediate early gene 1 (hCMV IE1) promoter/enhancer. Whereas little luciferase or beta-galactosidase activity was observed in tissues of mice carrying only the reporter genes, the presence of tTA in double-transgenic mice induced expression of the reporter genes up to several thousand-fold. This induction was abrogated to basal levels upon administration of tetracycline. These findings can be used, for example, to design dominant gain-of-function experiments in which temporal control of transgene expression is required
Time-lapse imaging of primary preneoplastic mammary epithelial cells derived from genetically engineered mouse models of breast cancer.
Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions