2,635 research outputs found

    Investment Alternatives For The Career Officer

    Get PDF
    This research project was undertaken for the purpose of educating the career officer to make intelligent personal investment decisions. Chapter one introduces, states the problem, justification to the problem, provides scope, introduces a methodology, and states limitations to the study. Chapter two introduces bonds, stocks, real estate, mutual funds, and annuities. The basic characteristics, advantages and disadvantages of each alternative are discussed. Chapter three utilizes a linear program model to select the most advantageous investment mix. The author\u27s required notes of return on investment and diversification relationship are used to illustrate how the model works. Chapter four will summarize the entire study. Additionally, basic conclusions will be drawn and suggestions for future research will be offered

    Measurement of the lunar neutron density profile

    Get PDF
    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically

    Colloidal diffusion and hydrodynamic screening near boundaries

    Get PDF
    The hydrodynamic interactions between colloidal particles in small ensembles are measured at varying distances from a no-slip surface over a range of inter-particle separations. The diffusion tensor for motion parallel to the wall of each ensemble is calculated by analyzing thousands of particle trajectories generated by blinking holographic optical tweezers and by dynamic simulation. The Stokesian Dynamics simulations predict similar particle dynamics. By separating the dynamics into three classes of modes: self, relative and collective diffusion, we observe qualitatively different behavior depending on the relative magnitudes of the distance of the ensemble from the wall and the inter-particle separation. A simple picture of the pair-hydrodynamic interactions is developed, while many-body-hydrodynamic interactions give rise to more complicated behavior. The results demonstrate that the effect of many-body hydrodynamic interactions in the presence of a wall is much richer than the single particle behavior and that the multiple-particle behavior cannot be simply predicted by a superposition of pair interactions

    Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 2

    Get PDF
    Particle dynamics of magnetorheological fluids (fluids that change properties in response to magnetic fields) are studied to help understand adaptable new fluids for use in such applications as brake systems and robotics

    On Algorithmic Statistics for space-bounded algorithms

    Full text link
    Algorithmic statistics studies explanations of observed data that are good in the algorithmic sense: an explanation should be simple i.e. should have small Kolmogorov complexity and capture all the algorithmically discoverable regularities in the data. However this idea can not be used in practice because Kolmogorov complexity is not computable. In this paper we develop algorithmic statistics using space-bounded Kolmogorov complexity. We prove an analogue of one of the main result of `classic' algorithmic statistics (about the connection between optimality and randomness deficiences). The main tool of our proof is the Nisan-Wigderson generator.Comment: accepted to CSR 2017 conferenc

    Short Duplication in a cDNA Clone of the rbcL Gene from Picea abies

    Full text link

    High resolution radio imaging of the two Particle-Accelerating Colliding-Wind Binaries HD167971 and HD168112

    Full text link
    The colliding-wind region in binary systems made of massive stars allows us to investigate various aspects of shock physics, including particle acceleration. Particle accelerators of this kind are tagged as Particle-Accelerating Colliding-Wind Binaries, and are mainly identified thanks to their synchrotron radio emission. Our objective is first to validate the idea that obtaining snapshot high-resolution radio images of massive binaries constitutes a relevant approach to unambiguously identify particle accelerators. Second, we intend to exploit these images to characterize the synchrotron emission of two specific targets, HD167971 and HD168112, known as particle accelerators. We traced the radio emission from the two targets at 1.6 GHz with the European Very Long Baseline Interferometry Network, with an angular resolution of a few milli-arcseconds. Our measurements allowed us to obtain images for both targets. For HD167971, our observation occurs close to apastron, at an orbital phase where the synchrotron emission is minimum. For HD168112, we resolved for the very first time the synchrotron emission region. The emission region appears slightly elongated, in agreement with expectation for a colliding-wind region. In both cases the measured emission is significantly stronger than the expected thermal emission from the stellar winds, lending strong support for a non-thermal nature. Our study brings a significant contribution to the still poorly addressed question of high angular resolution radio imaging of colliding-wind binaries. We show that snapshot Very Long Baseline Interferometry measurements constitute an efficient approach to investigate these objects, with promising results in terms of identification of additional particle accelerators, on top of being promising as well to reveal long period binaries.Comment: 8 pages, 1 figure, accepted for publication in A&
    • …
    corecore