17 research outputs found

    Liposomal bupivacaine as a single-injection peripheral nerve block: a dose-response study.

    No full text
    BackgroundCurrently available local anesthetics approved for single-injection peripheral nerve blocks have a maximum duration of <24 hours. A liposomal bupivacaine formulation (EXPAREL, Pacira Pharmaceuticals, Inc., San Diego, CA), releasing bupivacaine over 96 hours, recently gained Food and Drug Administration approval exclusively for wound infiltration but not peripheral nerve blocks.MethodsBilateral single-injection femoral nerve blocks were administered in healthy volunteers (n = 14). For each block, liposomal bupivacaine (0-80 mg) was mixed with normal saline to produce 30 mL of study fluid. Each subject received 2 different doses, 1 on each side, applied randomly in a double-masked fashion. The end points included the maximum voluntary isometric contraction (MVIC) of the quadriceps femoris muscle and tolerance to cutaneous electrical current in the femoral nerve distribution. Measurements were performed from baseline until quadriceps MVIC returned to 80% of baseline bilaterally.ResultsThere were statistically significant dose responses in MVIC (0.09%/mg, SE = 0.03, 95% confidence interval [CI], 0.04-0.14, P = 0.002) and tolerance to cutaneous current (-0.03 mA/mg, SE = 0.01, 95% CI, -0.04 to -0.02, P < 0.001), however, in the opposite direction than expected (the higher the dose, the lower the observed effect). This inverse relationship is biologically implausible and most likely due to the limited sample size and the subjective nature of the measurement instruments. While peak effects occurred within 24 hours after block administration in 75% of cases (95% CI, 43%-93%), block duration usually lasted much longer: for bupivacaine doses >40 mg, tolerance to cutaneous current did not return to within 20% above baseline until after 24 hours in 100% of subjects (95% CI, 56%-100%). MVIC did not consistently return to within 20% of baseline until after 24 hours in 90% of subjects (95% CI, 54%-100%). Motor block duration was not correlated with bupivacaine dose (0.06 hour/mg, SE = 0.14, 95% CI, -0.27 to 0.39, P = 0.707).ConclusionsThe results of this investigation suggest that deposition of a liposomal bupivacaine formulation adjacent to the femoral nerve results in a partial sensory and motor block of >24 hours for the highest doses examined. However, the high variability of block magnitude among subjects and inverse relationship of dose and response magnitude attests to the need for a phase 3 study with a far larger sample size, and that these results should be viewed as suggestive, requiring confirmation in a future trial

    Continuous Adductor Canal Blocks: Does Varying Local Anesthetic Delivery Method (Automatic Repeated Bolus Doses Versus Continuous Basal Infusion) Influence Cutaneous Analgesia and Quadriceps Femoris Strength? A Randomized, Double-Masked, Controlled, Split-Body Volunteer Study.

    No full text
    BackgroundIt remains unknown whether continuous or scheduled intermittent bolus local anesthetic administration is preferable for adductor canal perineural catheters. Therefore, we tested the hypothesis that scheduled bolus administration is superior or noninferior to a continuous infusion on cutaneous knee sensation in volunteers.MethodsBilateral adductor canal catheters were inserted in 24 volunteers followed by ropivacaine 0.2% administration for 8 hours. One limb of each subject was assigned randomly to a continuous infusion (8 mL/h) or automated hourly boluses (8 mL/bolus), with the alternate treatment in the contralateral limb. The primary end point was the tolerance to electrical current applied through cutaneous electrodes in the distribution of the anterior branch of the medial femoral cutaneous nerve after 8 hours (noninferiority delta: -10 mA). Secondary end points included tolerance of electrical current and quadriceps femoris maximum voluntary isometric contraction strength at baseline, hourly for 14 hours, and again after 22 hours.ResultsThe 2 administration techniques provided equivalent cutaneous analgesia at 8 hours because noninferiority was found in both directions, with estimated difference on tolerance to cutaneous current of -0.6 mA (95% confidence interval, -5.4 to 4.3). Equivalence also was found on all but 2 secondary time points.ConclusionsNo evidence was found to support the hypothesis that changing the local anesthetic administration technique (continuous basal versus hourly bolus) when using an adductor canal perineural catheter at 8 mL/h decreases cutaneous sensation in the distribution of the anterior branch of the medial femoral cutaneous nerve
    corecore